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FOREWORD

The two volumes LECTURES ON MARINE ACOUSTICS represent compilations of
lectures presented at the short course in Marine Acoustics held at the
Department of Oceanography of Texas A&M University between June 28 and
July 2, 1971. The short course was conducted under the auspices of the
National Sea Grant Program through the Institutional Grant GH-101 to
Texas A&M University.

Volume I, Fundamentals of Marine Acoustics, is a set of lecture notes
prepared for the course "Marine Acoustics" given by the Department of
Oceanography on a regular basis. These notes also served as general information
and were presented, in part, to provide basic information that was necessary
in order that the short course participants could better understand the
advanced topics presented by experts in their fields. The latter lecture notes
are compiled in Volume II, Selected Advanced Topics in Marine Acoustics.

I am grateful to Mrs. Barbara Webb for her patience in typing these notes
and drawing the figures.

Jerald W. Caruthers
June 1971



FOREWORD TO REVISED EDITION

A second short course in Marine Acoustics was presented at Texas A&M
University between June 25 and 29, 1973. Revised editions of LECTURES ON
MARINE ACOUSTICS, Volume I, Fundamentals of Marine Acoustics, and Volume II,
Selected Advanced Topics in Marine Acoustics, were published for the course.
In addition, a new set of notes, Volume II - Part 2, Selected Advanced Topics
in Marine Acoustics, was compiled from the new Tectures presented at that
time.

Jerald W. Caruthers
June 1973
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I. INTRODUCTION

Acoustics is the engineering science that deals with the generation,
propagation, and reception of energy in the form of vibrational waves in a
material medium. In order that this energy be of any value it must contain
some form of information; so, generally, understanding the intelligence con-
tained in the transmitted energy is included as a branch of acoustics.

The recorded history of sound in the sea dates to 1490 when Leonardo
da Vinci wrote: "If you cause your ship to stop, and place the head of a long
tube in the water and place the outer extremity to your ear, you will hear

ships at a great distance from you." This is the first example of the passive
Tistening device. Since that day, the engineering science of sound in the sea

has come a long way.

Practical uses of underwater sound began just after the turn of the
century: The underwater bell was used for a beacon in dangerous waters and
for a navigation aid in shallow waters; echo-sounders were used for depth
determination; and echo-ranging sonars (then called "asdic") were used for
submarine and iceberg detection and location.

Today, bathymetry is determined solely with echo-sounders, and the detec-
tion of submarines is accomplished primarily with sonars. Echo-ranging systems
are also used for the detection, location, and, to some extent, classification
of fish shoals. Offshore exploration for petroleum is quite dependent upon
the use of subbottom echo-sounding devices. Passive listening and communication
devices, as well as acoustic markers and positioning systems, have many applica-
tions. More exotic devices such as those for acoustical imaging and holography,
as well as for acoustical underwater television telemetry, are in the offing,
if not already upon us.

In fact, the use of underwater sound has proliferated to the point that
future use may require regulation.*

*"present and Future Civil Uses of Underwater Sound," National Academy
of Sciences {Washington, D. C., 1970).



I.7. Sound in the Sea

The basic concept of sound transmission is fairly simple: Sound is a
propagated mechanical disturbance in a medium. Associated with this disturbance
are pressure and density fluctuations brought about by particle motions. There
are basic relations between forces distorting the medium and these particle
motions. According to the simplest model, good for small amplitude waves, the
equations of motion, continuity, and state may be combined into a partial
differential equation known as a wave equation, e.g.,

2
vzp_Lﬁ_ﬂ:o
c? 3t?

, [.1

where p=p(X1,X2,X3,t) 1is the excess pressure, c=c(x;,X,,X3) is the speed
of sound, and v2 1is the Laplacian operator.* Naturally, a specific problem
would also include boundary conditions.

For even the most elementary understanding of sound in the sea, it is
necessary to have at Teast a basic understanding of the nature of sound field.
The simplest description of this sound field is the solution of the wave equa-
tion in one (spatial) dimension in terms of a sinusoidal plane wave represented
by

p(x,t) = py sin(g%5~— 2rft + ¢} 1.2

where p, is the amplitude of the pressuré disturbance, » the wavelength,

f the frequency, and ¢ the phase shift. T , the period, is equal to 1/f .
The argument of the sine function is called-the phase. The quantity fa

can be shown to be the phase speed ¢ , i.e., c=fa .

Keeping in mind that the primary function of acoustic transmissions in the
sea is to transmit some form of information, a function to which no other
physical phenomenon has been suitabiy adapted, it is worthwhile to consider
some of the fundamental points which control and Timit its transmission as

*(X; ,Xp,X3) are spatial coordinates, e.g., the rectangular coordinates
(x,y,2) .



compared with various electromagnetic telemetry systems used in air (radio,
radar, eye, etc.).

® The velocity of sound in water is small compared to the
velocity of electromagnetic waves in air (by a factor of
2 x 10%), so the scan rate is greatly reduced.

e High frequencies are strongly attenuated {(useful freguencies
are generally below 15 kMz), so the data rate is much lower.

o Wavelengths are longer (greater than 0.1 meters because
r=c/f}, so the spatial resolution is much Tower.

e The gradients in the speed of sound in water are much stronger
than gradients of the speed of light in air, thus giving stronger
refraction of sound (radii of curvature for rays in the order of
tens of miles), so that bearing information is less reliable.

e Background noise and reverberation in the sea are greater,
stronger freguency spreading occurs, and the Q (see next
chapter) is lower, so detection is more severely limited.

e Water cannot support pressures below a certain minimum, so the
amount of energy that may be put into the water is limited by
the size, and depends upon the depth of the projector.

Nearly all research and development in underwater acoustics can be traced
to one of the above problems. Throughout these notes the simple fact that the
primary function of underwater acoustics is to transmit information will be
stressed and the above problems will constantly appear.

1.2. The Nature of the Acoustic Field

We have already pointed out that the acoustic field may be described by
a pressure variation p(x,y,z,t) and that, in certain simple cases, this
pressure variation may be represented by a sinusoidal plane wave,



p(x,t) = pg sin (kx - wt +¢) *

where the angular wave number (k) and the angular frequency (w) have been
defined by k=2n/% and w=2nf . It is easily shown that the velocity
(c=fA) s given by c=w/k .

The general plane wave in one-dimension is described by any function of
the form

p(x,t) = flkx - wt) . 1.3

Any such plane wave may be formed from a sum {or an integral) of appropriate
sinusoidal plane waves. For example, a plane wave may be

n
p{x,t) = 5: p. sin(k.x - w.t + ¢.) , 1.4
i1 i i i

where n may be any number and P; is the amplitude of the componént wave
having angular frequency w. , wave number ki » and phase shift ¢i . The
velocity of each component wave is given by ci=w1/ki . If the velocities of
all the components are the same, the medium is said to be non-dispersive,
otherwise it is dispersive. For all practical purposes water is non-dispersive

to acoustic waves.

For many applications, the average intensity of the acoustic field is more
useful and more readily measured than the pressure. Intensity is a measure of
the rate of energy flow (power) through a unit area perpendicular to the

*The three-dimensional sinusoidal plane wave may be obtained by replacing
kx by k - ? where Kk is the wave or propagation vector with magnitude
2n/x and is in the direction of wave propagation, and ¥ is the position
vector of the point in question from an arbitrary origin. But, a coordinate
system may always be found in which any plane wave will appear in a one-dimen-
sional form.



direction of wave propagation;
Intensity = Power / Area

If the wave is not a plane wave or if there are multiple beams, the situation
is more complex and will not be discussed here.

The symbol I and the word "intensity” will generally mean "average
intensity" and may be calculated from

I1=Kbpu I.5

where K s a constant and depends upon the choice of units, u 1is the
particle speed, and the bar means time average over an interval 1 .

The time average X(t,r) of any quantity X(t) may be obtained from*

T+t
X(t.7) =§-I X(t')dt' 1.6
t

Note that pu # p u because p and u are not independent, as will be seen
next.

The equations of motion used in developing the wave equation are also
useful as they are; for example, Newton's Law states

, I.7

2lEy

grad p = - o

where U is the particle velocity and p is the equilibrium density. For

*If the signal X{t) is stationary and if 1t 1is large enough

.
T(1) = lf X(t')dt' 1.6.a

0

that is, the average is independent of when it is taken,



plane waves, the gradient may be taken and the integration performed to get
p = pcu . 1.8

If this is substituted into equation I.5, we find

p2(t,t
nC

I(t,1) = K
for any acoustic plane wave. As is conventional for underwater acoustics,
pressure is in dynes/cm® (microbar, ub) , density is in g/cm? , the speed
of sound (as used in this formula) is in cm/sec , and intensity is to be
watts/cm? . Thus, K is 10-7 (watts/cm?)/(ergs/sec cm?) , and intensity
is given by the practical formula

-,
I = g—cioﬂ’ 1.9

The product of pc 1is about 154,000 grams/sec cm? for water, so that

= p? -7 = -12 32 = =12 K2
I 54,000 x 10 0.65 x 10 p .65 x 10 P yms I.10
where the root-mean-square pressure Prms is defined by Prms = fﬁ{

If the disturbance is a sinusoidal plane wave, then the mean square
pressure, averaged over a period T , is

ad
p2 Tg"f sin?(kx - wt)dt
0
or
I
2
— pO

?—T'{ [T - cos 2(kx - wt)]dt

o
[
H



The average of the cosine term over a period is zero. So that, for a
sinusoidal plane wave

52

H

2
p2 / 2

and ) I.11

Py = Py / Y2 = 0.707 p,

The intensity of a sinusoidal plane wave is

= -12 2
Ispw 0.325 x 10 Py - I.12

The quantity pc has come to be called the specific acoustical resistance
of the medium in accordance with an analogy set up with electrical circuits.
According to this analogy:

Y <= F (= pA ; pressure times Area)
I <= u
R <= pchA

¥ = RI <= F = (pcA)u ; p = pcu

where pc is the specific (per unit area) resistance. In general, the specific
acoustical impedance is the ratio of the pressure to the velocity, and it is
complex., '

Thus far, pc appears to be purely resistive, as it is for plane waves in
an elastic medium. The important point concerning a purely resistive case is
that the pressure and the velocity are in phase. Non-elasticity in the medium
or, as we shall see shortly, the geometry of the field can cause a relative phase
shift. 1In these cases the acoustical resistance becomes acoustical impedance
andg is a complex quantity.

The speed of sound in air is 34,400 cm/sec and in sea water it is about
150,000 cm/sec; the density of air is 0.00129 g/cm® and of sea water is



1.02 g/cm ;3 the specific acoustical resistances are 42 and 154,000 acoustical
ohms, respectively. Their ratio is

(pc),,

-(BE-); = 3700

The ratio may also be written

2
(pc)w _ “aPu - pra
(pc), ~u p 2
a wha paIw

‘For a given pressure disturbance, the particle speeds and displacements are
about 4000 times greater in air than in water; for a given particle speed, the
pressures in water are 4000 times greater than in air.

This means that the characteristics of a hydrophone or projector must be
considerably different from those of a microphone or Toudspeaker, and that an
air-water interface represents a strong discontinuity for the propagation of
sound and, therefore, the interface is a good sound reflector.

The average power emitted by a sound source during the time + (neglect~-
ing time delay due to finite propagation speeds) is obtained by integrating the
intensity I{t) over a surface £ completely enclosing the source, viz.,

P{t) =‘}r I{t)ds . ) 1.13
z
As an example consider the power emitted by an isotropic point source at
the origin of a spherical coordinate system. In this case intensity is a
function of the radial coordinate (r) only. The power flowing through any
sphere in radius r s

sl

2m
f I(r)risine do d¢
0

gl
t
l\)|w2L""'\



The integration results in
P = 4nlr? .

Thus, we find that the intensity at any point in space due to an jsotropic
point source at r=0 is

I{r) =P/ 4nr2 | 1.14

This simple example serves to illustrate that power is the significant
quantity to be related to the source while intensity is a field quantity. But,
it is conventional to specify a standard measuring point and refer to "source
jintensity."

Source intensity is the intensity of the sound produced on the acoustic
axis {direction of maximum sound propagation) one yard from the acoustic center
of the source (the i1l-defined point from which rays emanate). To obtain
source intensity empirically one must measure the intensity on the acoustic
axis at a great distance and extrapolate, using equation I.14, back to
r=1 yd.

In the case of an isotropic point source

= 2
ISOUFCE P/ 4n(91.5)

where P is in watts, I in watts/cm? , and 91.5 cm is one yard.

Then

source

- -S
Isource 0.95 x 107°P . I.15
Our discussion concerning the intensity field in the vicinity of an iso-
tropic point source has thus far been without reference to the pressure field.
Let us now consider the pressure itself for this simple case,



10

In a spherically symmetric field, the field variables are functions of the
radial coordinate (and time) only. The wave equation reduces to

1.8 (28py -1 3% 1.16

As may be verified by direct substitution,
p = a Jlkr - wt)

"
or 1.17

p = %—cos(kr -wt) +j %-sin(kr - wt)

where a 1is a real constant related to the source strength and j = /=T , 1is

a solution. The complex form of the mathematical solution has been taken in order

that the manipulations may be performed with greater ease. One should be aware
of the fact that the physical solution may be either the real or imaginary part.

A relation between the particle velocity and the pressure may be found by
the application of equation 1.7 in the form

.1
u o grad p , 1.18

where the time integration has been performed. For our simple case this becomes

S I
Jwp or

>

or having performed the differentiation and returning the pressure to the
equation

:_-’.- .._.J. *
u pc(]+kr‘)p :

*One often finds the imaginary part of this formula negative. It is posi-
tive here because of the sign adopted for the exponent in equation I.17.



Or, we may solve it for pressure;

p = u )
1+ 1 kr
kr kzrz

= —0S = e (7. L

Hence we see that the specific acoustical impedance is complex and, there-
fore, the velocity and pressure have a non-zero relative phase.

If we assume that this spherical wave has locally plane wave fronts, the
intensity is the average of the product of the real parts of p and u .
The real pressure is

Re (p) = %—cos(kr - wt)

and the real particle velocity is

Re {u) =2 cos{kr - wt) + sin(kr - wt)

=
pe pcr?

The second term of the velocity is 90° out of phase with the pressure and, like
the reactive part of an electrical circuit, dissipates no power. As we have
seen, the average of cosine squared is a half and the average of a sine-cosine
product is zero. The intensity is, therefore,

D=5 32 (107 . 1.20

Comparing this to equation 1.14 gives
a =/ 2207 I.21
It should be noted that the average intensity may also be obtained from

I= [%—Re (pu*)] x 10-7 . 1.22

11
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Attention should be brought to three other radiation field guantities:
"Energy flux" is a vector having a magnitude that is equal to the power flowing
across a unit surface and having a direction that is the direction of the
outward normal to the surface. In the simple, one beam case, the magnitude of
the energy flux is (I cos &) , where 8 1is the angle between the beam direc-
tion and the normal to the surface.

"Energy density" is the energy contained in a unit volume of the radiation
field. It may be calculated from It/1 , where 1 1is the length of the segment
of radiation that passes through the unit of area in time t , or more simply,
the energy density is I/c .

The quantity It 1is sometimes used in the analysis of transient or non-
stationary signals. It is the energy passing through the unit of area defining
the intensity in time =t . Although this quantity is sometimes called “energy
flux density," it has no physically significant name. The arbitrariness of =
is sometimes removed by specifying it to be one time unit (it then results in
a unit like the "Langley" used in meterological radiology), or, in the case of
transient signals, i.e., signals that die away fast enough for the time integral
of the squared pressure to converge, t 1is allowed to become infinite
(It remains finite). In the latter case, it is the total energy impinging upon
a unit area perpendicular to the beam,

1.3. logarithmic Units
It is quite common in acoustics to find energy related quantities

measured in "decibels" relative to some reference. The decibel (db) intensity
is a logarithmic unit defined by

L =10 log II
ref

[.23

where L is meant to denote "Level” and Iref is some intensity reference
value adopted by convention. An assortment of reference levels are found in the
1iterature.
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A rather simple, but Tittle used, reference is 1 watt/cm? . 1In this case
L{re 1 w/cm?) = 10 Log I

The reason the use of this reference is not prevalent is that most levels that
would result from its use would be negative. The conventional air acoustics
reference level is the minimum intensity detectable by the average human ear

at 1000 hz which is 107%% w/cm? (0.000204 dyne/cm? rms pressure). In this case

L(re 10718 w/cm?) = 10 Log I + 160

The most common reference for underwater acoustics is the intensity (in water)
of a signal having an rms pressure of 1 dyne/cm? (ub) . This intensity is,
according to equation 1.9,

= -12 2
Iref 0.65 x 10 w/cm . 1.24

So that the conventional intensity Tevel for underwater acoustics is

L{re 0.65 x 10712 w/em?2) = 10 Log I + 122 . 1.25

where I s in watts/cm?

Although the reference Tevel is the intensity of one ub rms pressure,
the reference is most often stated in terms of the pressure itself;

L{re Tub) = 10 Log I + 122 , [.26

The Tevel may be calculated in terms of pressure directly, i.e.,

=2
L = 10 Log II = 10 Log —:ﬁll&ﬁ;———
ref (p%/pc)

ref
The acoustic impedances will cancel provided the medium is not changed, so that

L(re Tub) = 20 Log Prms - 1.27
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The difference between intensity levels may be expressed in db  without
any reference level specified;

Iy Iy
AL = L, - L; = 10 Log i - 10 Log i R
ref ref
or
Iy
AL = 10 Log — 1.28
o]e} T
ar
AL
I, =
_ .10
-f; = 10

These last formulae are quite useful in relating between ratios and
decibels. It is handy to memorize at least the following conversions

AL 0 3 6 7 9 10
I,JI, 1 2 4 5 8 10

Negative values of AL require that the ratio be inverted.

1.4. Spectral Notions

Another point to consider is that, quite often, there is more than just
one discrete sinusoidal component in the sound wave, e.g., equation 1.4, or,
of greater importance, there is a continuous set of components. In the latter
case the pressure must be written as an integral of the continuous set of
sinusoidal components over the frequency or wave number. But, more often
intensity is of greater significance, so we will be concerned with so~-called
"power spectra” in greater detail.

Let SI(f) be the "power spectral density" defined by

s;(f) = Lim AL(f)

St AT I.29
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where AI(f) is the intensity of the signal in the frequency band Af centered
at frequency f .

In terms of an integral,

f+af
AI(f) = f SI(f)df

. 1.30
f

The figure below illustrates possible distributions of spectral density over
frequencies.

S 5

tf)H U?H

Continuous Continuous
{smooth)

(nearly discrete)

Quite often we are satisfied with using these notions in an approximate sense.
Let W=af | IW=AI » and we then approximate equation I1.29 by

=]

Si(f) = 1.31

This assumes that W 1is small.

These concepts are carried over to log units by the following definitions:
Band Level (BL) is defined by

I
BL = 10 Log (5 Wy

L]

1.32
ref
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and Spectrum Level (SPL)* is defined by

S

L ) . 1.33
ref

SPL = 10 Log (I

In Tog units equation 1.31 becomes

BL = SPL + 10 Log W . 1.34

PROBLEMS

1.

What are the levels of the following intensities (re lub); 1.0,
0.65 x 10712, 1 x 10712, 2 x 10712, 5 x 10712, 1011, and 1075 w/cm?® ?

What are the levels of the following rms pressures; 1, 2, 10, 100,
10-2, and 105 ub ?

What are the intensity ratios (I,/I;} of the following Tevel differences
(AL =1, -Ly);0,1,2,5, 10, 20, and -3 db ?

What are the spectrum Tevels for noise of -20 db  if measured in band
widths of 1/2, 1, 2, 10, and 100 Hz ?

Compare the relative pressures and particle motions for acoustic waves of
equal intensity in air and in water.

Given a pressure at a point that is a superposition of two sinusoidal
plane waves, i.e.,

p(t) = p, sinwt+p,sinw,t, w #w, ,

*Do not confuse SPL used here and in Urick's "Principles of Underwater

Sound for Engineers" with SPL used by some authors as "sound pressure level.”
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and assuming no dispersion, what is the average intensity of the wave?
Give a general formula for the intensity at a point produced by the
pressure

n

p(t) = E: p; sin Wit
i=1

What is the intensity of the exponentially damped sinusoidal plane wave

t

p(t) = p, e 0 cos wt

if the averaging interval is t=0 to t=T (the period of the sinusoidal
part)? Consider what happens when a=ty/T goes to zero or infinity.

Show that the plane wave p=f(kx - wt) is a solutjon of

2
v2p_l.._...§....E::0
c? at?

-
9. Show that for the plane wave p=f(kx - wt) and u=u T, » where 1 is a

10.

X

unit vector along the x-axis,

Y11
grad p = “PoE

results in p=pcu.

Verify that

Re(ab*) = %—aobecos $

PO vt

Re(a) Re(b) =

using a=a0eJWt and b=b0eJ(Wt+¢) , where a, and 60 are real, and

¢ 1s the relative phase.



18



19

IT. ELECTROACOUSTIC AND CHEMICAL TRANSDUCTION

According to at least one definition of a transducer, it is a device that
converts energy from one form to another.* In the case of an electroacoustic
transducer, this conversion may be from electrical energy to acoustical energy
(e.g., as a loudspeaker in air or a "projector" in water), or it may be from
acoustical energy to electrical (e.g., as a microphone in air or a "receiver"
or "hydrophone" in water). If we include the one way conversion of chemical
energy into acoustical energy, we might include, as we shall, a discussion of
explosive sources in this chapter on transduction.

II.%7. ETectroacoustic Transducers

Electroacoustic transducers designed for underwater application have the
same purpose as the loudspeaker and the microphone used in air: they are to
efficiently convert electrical to acoustical energy and vice versa. But the
desire to have a maximum power conversion efficiency prohibits the direct
adaptation of the loudspeaker to an underwater projector or the microphone to a
hydrophone.

The reason that air transducers would not work efficiently in water is that
they are designed to match the acoustical impedance of air, and, since the
acoustical impedance of water is about 4000 times greater, the mismatch would be
tremendous. The underwater transducer must operate with 60 times the force and
1/60 the displacement of a transducer in air. Actually, underwater transducer
materials are not perfectly matched to the acoustical impedance of water but are
10 to 30 times larger. Although this mismatch is not small, it is better than
would be obtained with Toudspeakers and microphones used in water.

Undoubtedly, the most important single characteristic of a transducer
material is the electromechanical coupling factor., This factor is related to
the ratio of stored mechanical energy to total electrical input energy, and is

*The term "transducer” is actually given a broader definition than this, but
the above definition is exactly what we wish to use throughout these notes.
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related to the acoustical impedance match. It has also been shown that, for
hydrophones used for detecting small signals, the self-noise of the receiver is
more important than the sensitivity (i.e., the voltage to pressure proportionality
constant). In this chapter we shall consider these important quantities in
greater detail.

In practice underwater electroacoustic transduction is accomplished by
either of two phenomena:*

Electrostriction--the conversion of energy between acoustical and electrical
forms by means of a dependence between electric fields and particie

displacements in ferroelectric or piezoelectric materials.

Magnetostriction--the conversion of energy between acoustical and electrical
forms by means of a dependence between magnetic fields and particle
displacements in ferromagnetic materials.

The latter, although having certain special applications, is not in general
usage and will not be discussed in these notes.

Although terminology applied to electroacoustic phenomena is not standard-
ized, we will adhere to the following nomenclature: electrostriction is the
general phenomenon as previously defined, and a distinction will be made between
the piezoelectric effect (piezoelectric crystals) and the ferroelectric effect
(ferroelectric ceramics).

Piezoelectricity. The unstrained state of a crystalline lattice represents
an electrically neutral state. When certain lattices are strained, charge

shifts causing excess charge to appear on the faces of the crystal, i.e., an
electric field appears across the material. Conversely, if an electric field
is applied the crystal will distort. Examples of piezoelectric materials are
quartz, ammonium dihydrogen phosphate (ADP), Rochelle salt, and Tithium
suiphate.

*0thers exist but are not commonly used.
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A diagram explaining this phenomenon in quartz is given below:

Neutral Applied Electric Field (¢)

Silicon

For this form of electrostriction, the displacement and electrical field
are proportional and therefore the acoustical and electrical frequencies are
the same.

Advantages of piezoelectric crystais are uniformity in production and the lin-
earity of the displacement-electric field relation. Among the disadvantages are
its high electrical impedance (thus requiring high operating voltages which limit
the power due to dielectric breakdown) and Timitations as to the form in which
it can be supplied.

Ferroelectricity. Ferroelectricity is an electrical phenomenon that is

analogous to the ferromagnetic phenomenon but has nothing whatsoever to do with
ferric materials. A ferroelectric material is a material in which a permanent
electric polarization can be established in an unstrained material just as a
permanent magnetic field can be established in a ferromagnetic material.
Electrostriction is accomplished by the reorientation of ferroelectric domains
in an applied electric field.

Some such ferroelectric materials are ceramics of barium titanate, lead
metaniobate, and lead zirconate-titanate. Some common trade names used in the
Titerature are:

PZT (#)} (Clevite brand lead zirconate-titanate),
Ceramic B (Clevite brand barium titanate), and
LM (Gulton G-2000 brand lead metaniobate).
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A simplified diagram of the ferroelectric effect is illustrated below:

Neutral Applied Electric Field_(a)
ferro- T ; f
electric / ] ¥ .i.
domains ad - Ad - c
electric Ky € X

dipoles

In ferroelectric materials the displacement is proportional to the square
of the applied field. Therefore, in a natural state a ferroelectric material
being driven by a sinusoidal electric field (gq sin wt) would produce a
sinusoidal displacement with twice the frequency, i.e.,

Ad = sin2wt = %-(1 - cos 2wt)

To reduce this undesired effect, and to permit the use of the material as
a receiver, a permanent electric polarization is established in the ceramic.
Thus, when the electric field (eg sin wt} is applied it is in addition to an
effective DC field (EDC) . The following field results:

e? = [EDC + eq sin wt]? = ESC * Zepee sin wt + a% sin?wt
If epc > € o the last term is unimportant and, since the DC field does not
produce a variation in the displacement, it follows that

Ad = 2€DC sin wt

€0
and there is no frequency doubling.

Ferroelectric ceramics have the disadvantages of being weak in tensile
strength and variable in their properties. The former is generally what limits
their power output, but prestressing can improve this situation. One of the



major advantages of this material is that transducers can be made in any
desired shape and size.

Electrical and mechanical systems. In order to provide a background in

which the operation of a transducer may be more readily understood, we will
review the fundamentals of electrical and mechanical oscillating systems. Let
us begin with the electrical system.

The circuit below represents a series RLC circuit:

A.C. —~
Source

Suppose.that the A.C. source is driving the system with the sinusoidal voltage
V= voed" (w=2nf) . The system satisfies

Lq + R + %—= VeIt

where g 1is electric charge and d is electric current (I=dg/dt) . The
steady state solution is given by

where

2L+ JuR + ¢

95

But we are more interested in the electric current which is given by

I= jwqﬂe‘]wt

23
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where

jwt julpe®

I = jwg e
0 JwR - w2l +-%

This may be put into the form
- : 1
V=[R+ j(wL - wC)]I
The coefficient of I 1is called the electrical impedance (Z) ;
Z=R+ 0l - 1) I
wC ? ’

with the real part (R) being called resistance and the imaginary part
(wk - %EJ being called the reactance (X) . Then

Z =R+ jX . IT.2

We will also have occasion to use “admittance" (Y) which is defined by

P —s

The figure below represents a mass sugpended from a rigid support by a
spring in a viscous medium having a drag coefficient b .

OO NN




If this system is driven by the force F=F0eJWt (w=2nf) , the equation
for its motion is '

rn:g: + be + Kg = FOEJWt s

where m 1is the mass and K the spring constant. The steady state solution
is given by

£ = g8

By substitution into the differential equation

Fo

-w2m + jwb + K

We are particularly interested in the velocity u=dg/dt . It is

jwt ijDeJWt

u = Jjwgge
jwb = wim + K

Dividing through by Jw and solving for F
- : K '
F=1[b+ j{wn - GJ]u . I1.3
In a manner analogous to the electrical case, we call the coefficient of
u in II.3 the mechanical impedance (Zm) , the real part (b) mechanical

resistance (Rm) , and the imaginary part (wm - %J mechanical reactance (X
Then

m

. . Ky _ .
Z =b+ J{wm - W) =R, vIK . 11.4

[t is readily shown that the condition of resonance is given by X or

Xm equal to zero in the electrical or mechanical systems, respectively.

) .
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Radiated energy. Thus far we have considered mechanical systems that are
not radiating energy. We now Tet the mechanical system be a vibrating

transducer radiating acoustic energy into the water. This will cause an
additional impedance which we will call the radiation impedance (ZP) . In
general, it has a resistive part (Rr) which is in phase with the force and
represents energy actually radiated into the water, and a reactive part (Xr)
which is 90° out of phase with the force and produces no radiated energy.

If we consider a transducer with a plane surface of area A , having
dimensions large compared to the wavelength of the sound produced, then, if we
neglect the edge effects, we may write

p=opcu , or F =opchu 11.5

where F and u are the instantaneous force on the fluid at the transducer
face and the velocity of the face, respectively; and pc is the specific acoustic
impedance of the water.

In this case the impedance is real with resistance

Rr = pchA
and no reactance (i.e., Xr = 0) . The reactance becomes nen-zero as the
edge effects become important.

In general we may write the radiation impedance as

Z, = pcA(r + jx)

where r -+ 1 and x - 0 as the acoustic wave becomes planar. The solid
curves in the following figure illustrate the variation of r and x for a
disc projector as a function of ka , where k s the angular wave number and
a 1is the radius of the disc.



1.

1.

The specific acoustic impedance of a spherical wave {as we found in
Chapter I) is

k*rz  _ gkr
1+ k2r2 1 + k2r2

pC

Thus the radiation impedance of a pulsating sphere of radius a is

k?a? _ _ jka
1 +k%a? 1+ k%a?

Zr = pchA

Plotted in the above diagram as dashed Tines are:

po= o KEE
51 + k232
x| = —K&—
ST1 4 k2a?

27
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Generalized theory of equivalent circuits. Rather than discussing specific
transducers and their various parameters, we will present the generalized rela-
tionships between the electrical and mechanical elements of the transducer.

The relations are sometimes called the "4-pole equations" because, according
to this analysis, the transducer is represented as a four-terminal network with
an efectrical and a mechanical input as shown below.

I u
r— RN "
e & D
Y Yb Zm F Zr
o a3 [ 5
Transducer

The current (I) flowing into the circuit is related to the voltage (V)
across the terminals and the velocity (u) of the transducer face according to

I = va - U . I1.7

Y, 1s the blocked {or clamped) input admittance corresponding to u=0 , and ¢
is the transformer ratio relating the short circuit current (V=0) to the
velocity of the transducer face.

From another point of view, we find that the force (F) acting on the face
of a transducer is related to the velocity of the face and the voltage produced
at the electrical side according to

F = ¢V + Zmu R I1.8
where Zm is the mechanical impedance defined earlier; we now call it the

short-circuited mechanical impedance since, in the coupled system, it is
determined when V=0 .
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Proceeding to the next branch of the circuit, we find that the force back
on the transducer face may be calculated from

F = _zru . I1.9
The negative sign appears because this is the reaction force to the output force

of the transducer. Using this to eliminate F from equation I11.8, then sub-
stituting for u in I1.7 we get

2
I= (Y, + o2V
b Zm + Zr
Then the input admittance is
Yi =Y+ Ym R I1.10

where Ym is the motional admittance given by

2
Y = II.i]
m Zm + Zr
For an electrostrictive transducer, the blocked admittance is simply the
admittance of a parallel resistance (R;) and capacitance (C,) and is
therefore
Y= e+ juc, . 11.12
b Rg 0 )

and the mechanical impedance is given by

_ . Ky _ .
Z. = b + j{wm - w) =R+ 3K

as we saw earlier. Here m represents the effective mass of the transducer
and K the effective elastic constant.
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The figure below is the equivalent circuit for a transducer emitting plane

waves:

]
R =b L =m C =
m myy; K
- AMAMN——ATTT—T |
Roe I Cp Rr = pch
[
¢
[f the following quantities are defined:
R R L
r m m
R = ot R, = —2 : L, = -~ - C., = (1)2[: R I11.13
M > M > M m
R q)z ¢2 ¢2
equation II.10 may be written
1 . . __L— -1
Yo = §3-+ JwCy + [RR * Ryt J(WLM - WCM)] . 11.14

The figure below illustrates the equivalent circuit in terms of these parameters:

e [

Power is dissipated into the three resistive elements of the circuit. The
power losses in Ry and RM are due to the joule heating and mechanical losses,
respectively. The power dissipated into RR is the radiated acoustic power.
Power in the reactive elements is stored and not available for acoustic

radiation.
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Ideally,

Ro‘*m

In practice it is possible to obtain a zero in the reactance, but this
occurs only at resonant frequency (Wres)' Sometimes it is desirable to have a
transducer operate at a single frequency. In this case a transducer with a
sharp resonance at that frequency is sought. But often transmitters and receiv-
ers are expected to operate over a broad band, so transduction is oftentimes
sought well away from these resonances.

Power conversion and impedance matching. Just as intensity is given by

equation 1.22, the average power in an electrical element may be expressed as
_ 1
p = E—Re[VI*]

For sinusoidal voltage across the element and current through the element with
amplitudes V, and I, , respectively, and relative phase ¢ , this equation may
be reduced to

P=lvyl,cos 4=V I coss

2 '0°0 rms - rms ’

where cos ¢ 1s the power factor. In order to achieve maximum power conversion
in the element for given voltage and current amplitudes, it is desirable to have
the power factor equal to unity {(i.e., ¢=0).
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Consider the diagrams below:

o & D G
Co | Rp Col gy
—_ Vo Lo —_—
: - G y L i o & "
Driver Transducer Matched Transducer
Driver

In the first circuit the transducer is being driven by a source with voltage
amplitude V, and internal resistance Ri . The power factor is given by

= 2 2 p2y-~l/2
cas ¢ = (1 + W C2 RR) .
In the second circuit an inductance (L) s added to tune out the capacitive

reactance. If the magnitude of the inductive reactance is equal to the magnitude
of the capacitive reactance (i.e., wlky = 1/wCy) the power factor is unity,

The optimum operating condition is obtained when the source reactance is
equal and opposite the transducer reactance and the source resistance is equal
to the transducer reactance. That is, the.optimum operating condition occurs
when

*

Zsource - Ztransducer ’

or
Rs + JXS = Rt - JXt

This conjugate matched impedance is obtained using a matching transformer,
which provides the proper source resistance and inductive reactance. The circuit



is illustrated below:

—AAAN & g—
Ri
..J_CD RR
oI
Vo
& o
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Transmission efficiency. The efficiency of a transducer is the ratio of

the power radiated to the total input electrical power.

To simplify the cal-

culations we assume that the electrical capacitance is tuned out by the source

and calculate the efficiency at resonance so that all the reactance is

eliminated from the circuit. The equivalent circuit is i1lustrated below:

$ :
i R

The total power dissipated in the transducer is

2 2
p o= Vems - VrmsERM F RR)+ Ro)
t 1 1 -1 Rg(R, + R
= t F———— M R
The power radiated is
= T2

PR Irms RR ?

where I is the rms current in the motional branch.

Yms

Then
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v 2 vz R
P = rms R. = rmi R ,
R Ry * RR R ERM RRj
The efficiency is

p

R _ RoRp

n =R
Py (Ry * Rp) (Ry ¥ Rp ¥ R)

This is the maximum internal efficiency that may be obtained from a given
transducer., The c¢ircuit external to the transducer also dissipates power. In
particular, when the source is conjugate matched to the transducer 50 percent
of the power is dissipated in the source.

Quality factor. A measure of the width of the resonant peaks is the quality
factor (Q) of a circuit. It is defined by

Q= Energy stored in the reactance 1
Energy dissipated in the resistance

per cycle
and is related to bandwidth by
W
. res
Q_ AW 3
where w . 1s the mechanical resonant frequency and Aw s the bandwidth
between half-power (3 db) points. '
The mechanical Q 1is given by
w_ L
M
Q = o . 11.15
M RR + RM

RM is generally small for crystal oscillators, but RR depends upon the medium
in which the crystal oscillates. RR is zero for a crystal operating in a
vacuum, so Q 1is very high (~10%). The same crystal acting in air would have
a Q of about 10% . These high Q values are the reason that crystal
oscillators produce very sharp tones. RR is very large for a transducer
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operating in water and the Q 1is relatively small (~10); therefore, the
resonance is broad.

QM determines the bandwidth of a projector if the source has a high output
impedance. But, as we have seen, for optimum transduction, the source is con-
jugate matched to the transducer in which case the controlling Q 1is given by

Q. tQ
Q:_e_._.z__.M .

where Qe is the quality factor of the electrical branch. The electrical
quality factor may be calculated from

Qe - wresCD(RR * RM)

Electromechanical coupling factor. At low frequencies the electrostrictive

transducer behaves essentially like two capacitors in parallel: the electrical
capacitance (Cq) and the mechanical capacitance (CM) produced by the elastic-
ity of the transducer. When the voltage V is applied to the parallel circuit,
electrical energy equal to Cg¥2/2 s stored in Cq , and mechanical energy
CMV2/2 is stored in CM . The ratio of mechanical to electrical energy is

given by
C, V2
M
T
Covz 0
(——)

For efficient transduction, CM/CG should be Targe. The electromechanical
coupling factor k s a measure of this efficiency. It is defined as

T M
k2 = "—————;*E—— I1.16
7 M
[T+ g Ty
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This is often approximated by

k = . 11.17

Although we do not wish to go into specific transducer materials and
geometries, it should be pointed out that k can be related to parameters of
the material and is constant for a given crystal cut and mode of vibration.

The value of k 1is 0.1 for quartz and 0.18 for barium titanate. In the
next section, we shall see how the electromechanical coupling factor is related
to receiver sensitivity of a hydrophone.

Recejver response. Equations II.7 and II.8 may be used to determine a

‘relation for the open circuit receiver sensitivity. In this case I=0 and
equation I[I.7 becomes
Y
b
us=s—yY
¢

This is substituted into equation II.8 to give

7Y Z Y
F=(¢+ mb)v=¢(1+ mb)v
¢ 62

Let us define the receiver sensitivity by

V]
o= 11.18
Ip|

or in terms of force

AfV]
o = ——

[F]

Then from force-voltage relation above

1
T + ZMYb

Lo A
$




where ZM has replaced Zm/¢>2 . Replacing the blocked admittance by the
blocked impedance, we find

1Z, |
o =4 b . I1.19
) Zb + ZM
Or, writing out the impedances,

|G+ dwCo)™Y|

=

a4 =

¢ (|(§3—+ Eo) ™+ (R + Ry + 3y - ]

If we assume that Ry 1is infinite and that Ry, and Ry are zero (the latter
since no energy is radiated), we simplify this to

1
e
.- ,
¢(|Tl——-+ j(wLM - wlw)|)

JuCy WCM
or
T
Wig
“%(lwm-#-—l—l) |
wCM wCo
finally
“u
o :%( o - ) . I1.20
| LGy - 1) -

At resonance (i.e., Woos = ]/JLMCM)

=
u
- |1

37
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Below resonance {i.e., W << wres)
“u
LeAl S feat_8 AL
$ CM ¢ CO HZ ¢
=— + 1
Co

)

Above resonance (i.e., w >> Woas

1
w2L

2
1
© [

MCo

The figure below illustrates the sensitivity as a function of frequency.

lLog o

res

Log w

II1.2. Explosive Sources

Small charges of explosive materials, particularly TNT, are also used for
sound sources. These have many applications ranging from seismic studies to
anti-submarine warfare (ASW). The amount of charge used ranges from fractions
of pounds to a few hundred pounds in weight. Their major advantage is the
high source levels that they can produce, but a disadvantage is that they do
not produce signals that lend themselves to very sophisticated signal processing.

The chemical energy of the explosion is converted into acoustical energy



39

through the production of a rapidly expanding bubble of incandescent gas. As
the bubble expahds a shock wave of acoustic energy is radiated into the water.

Due to the inertia of the water, the bubble will overshoot its equilibrium
position then eventually collapse producing a slightly negative pressure in the
water, This cycle may occur several times. The additional pulses produced
by this cycling are called bubble pulses.

Excluding the bubble pulses, the radiated acoustic pressure at a given
point is

p(t) = pye ) 11.21

where time is measured from the time the leading edge of the shock wave reaches
the point of interest, and t; is the time it takes for the pressure to reduce
to po/e . The characteristic time and the peak pressure are functions of

both the charge weight and the range.

Empirically it has been found* that TNT explosions may be described by

sy 1413
_ W
p0~2.16x104( - J
I1.22
-0.22
to = 0.058 W/° W
0 . r

where r s in feet, t 1in milliseconds, W 1in pounds and p 1in Ibs/in2.

Due to attenuation of the high frequency components that make up the pulse,
the onset of the pulse will not always remain abrupt. Attenuation and non-
Tinearity associated with the propagation of a high intensity pulse will cause
the pulse to broaden (through the factor (W!/3 /}“)”0'22 in ty) and

*Arons, A. D., D. R. Yennie, and T. P. Cotter, "Long Range Shock
Propagation in Underwater Explosion Phenomena II,“ U.S. Navy Dept. Bur. Ordnance
NAVORD Rept. 478 (1949)
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produce a spreading 1oss in excess of spherical {through the extra factor

(W/3/r)0-13 dn p).

The total energy of the explosion and the volume of the charge are both
proportional to the weight W . As a result of the latter proportionality,

an appropriate scaling factor for linear measures is W/3

Thus we find that

if we define a reduced time (tr) and a reduced range (rr) by

tw—1/3

t+
3

and

r ri-1/3

r

respectively, the charge weight will be eliminated from the equations, i.e.,

H

2.16 X }04(§7J1-73
.

Po

0.058 rro.zz

teo
The “energy flux density" e(t) is defined to be
t
1

= It = 1 2(1)dt!
e(t) = It = = D p2(t')dt

So, for the initial pulse of a TNT explosion in water,

pZ t 2L
= 2 04
e(t) e J t
2t
_ Pit T,
e(t) = 550 1 ~e
And the total energy flux density is given when t -+ = |
) p5tq
E=Lim e(t) = 500

tsco

[1.23

It is



The pressure impuise (Im) 1Js defined by

o0

Im = J' pdt

0

The impuise of the initial pulse is
@ t

Img = p, ‘[- e o gt = Pty
6

Using the eguations of 1I1.22, the impulse of the initial pulse is

173 0.94
Img = 1.78 W!/3 (HFK_Q Ib sec
in?

4]

The bubble pulses have the form of an exponential rise in pressure followed

by a symmetric exponential decay. Each pressure peak in succeeding bubble
pulses reduces by a factor of about 1/5. The time interval between the initial

pulse and the first bubble pulse is given by

_ 4.36 W/3

.
(d + 33)°/°

1

where d is the depth in feet of the detonation below the surface.

The following figure shows the pressure-time curve for the most significant

portions of the explosion:

P t
7 - |7yt
e P | lt | ~|T5-t]
1
P18 pe 2
! ng
l z/4\\k
N~— I S ———— ; T
B3 Tl P:J T2 ]
T, .
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And the following figure shows an impulse representation of the explosion:

- Ty oo Ty
<

The latter figure is useful for calculating the Tow frequency spectrum of
explosion.

The amplitude spectrum is obtained from

oo

A(f)=f p(t)edWrat |
0

and the energy flux density spectrum from

2AA*

E(f) = 22

The factor of two is introduced because we consider positive frequencies
only.
The following table* gives the pressure and impulise signature and their
- energy fiux density spectra:

*After Weston, D. E., "Explosive Sources," Inst. on Underwater Acoustics
(1961), Ed. V. M. Albers, Plenum Press, N. Y.



Description Schetnatic shape

Spactivimn equation

Shock J\
Bubble J\\____

Impulse I

2
2py

Eg(f) = —p——r
° pel + an?

2
8 Ps/ty
o L e
i pe (l/t,z_ +4m7 2f2)

E, (f)=(-;—)[{lg +1,cos2AlTy + Izcos2miTy = Nsin2mTy)?
C

+{1y sin2fT] + Ip8in2 573 — N(1 = cos znna)ﬂz

where N =1Ig+ 1 +12/2 7Ty

The following graph* shows the combined form of the spectra:
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*After Weston, D. E., "Explosive Sources," Inst. on Underwater Acoustics
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Frequency (c/s)

(1961), Ed. V. M. Albers, Plenum Press, N. Y.
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PROBLEMS

For the equivalent circuit below calculate: (a) the resonance frequency;
(b) the mechanical Q ; (c) the electrical Q ; (d) the bandwidth if the
driver impedance is high; (e) the bandwidth if the driver is matched;

(f) the efficiency; and (g) the electromechanical coupling coefficient.

Ry = 4250 Cy = 2680 wuf
> e AAAN e TGN |
LM = 107 mh
Rp = 12,5009 = %RR = 7259
Co = 0.069 uf

For the above transducer, plot the motional admittance in the complex
plane in the range 0 < w < =

Using 1/2 and 2 Tb charge weights of TNT, calculate Py > to , and total
energy flux density at 100 yds. Calculate the time interval between the
initial shock and the first bubble for both explosions occurring at

100, 1000, and 10,000 feet.

Show that for an explosive source rngto should be independent of r ;

is it and if not why? Also, how does it depend upon W and is this
dependence reasonable?



I1I. HYDROPHONES, PROJECTORS, AND CALIBRATION

Since quantitative data are required in the study of underwater acoustics,
it is necessary to define a receiving response for the electroacoustic devices
used in measuring the sound field and a transmitting response for electro-
acoustic devices used in producing a sound field. It is also necessary that
these devices be calibrated so that these responses may be accurately known.

ITI.1. Transducer Responses

The receiver response of a hydrophone is the magnitude of the open-circuit
voltage per unit magnitude of plane wave pressure incident on the hydrophone,
i.e.,

V]
|pl

Or, in other words, the open-circuit RMS voltage produced by a plane wave of

o

ITI.1

unit rms pressure, i.e.,

v
o = = III.1.a

prms

Often the response is expressed in decibels:

Receiver Response = 20 Log (a/a, ..} . 111.2

ref

The references response is taken to be one volt rms voltage produced by
one dyne/cm? rms plane wave pressure, i.e.,

Volt
ub

Volt
dyne/cm?

= ] =1

“ref

So the response in db (re 1 volt/ub) is 20 Log o .
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The transmitter response of a projector is the magnitude of the pressure
produced at a point one meter (or sometimes one yard) from the acoustic center
in a direction along the acoustic axis per unit magnitude of electrical current
in the projector, i.e.,

[p|
g = —— 111.3

il
Or, the transmitter response may be defined in terms of rms values. The
response is also expressed in decibels:

Transmitter Response = 20 Log (B/Bref) . 111.4

Braf is taken to be 1 ub/amp, so the response in db (re 1 ub (at one meter)/amp)
is 20 Log 8 .

Sometime the transmitter response is references by 1 ub (at one yard)/amp .
This response is 0.87 db larger than the previous one because

20 Log (1.1) = 0.87

where 1.1 1is the number of yards per meter.

I11.2 Calibration

For most transducer applications, it is necessary that the responses
be known. There are many ways to calibrate transducers,* but let us consider
only the two simplest and most common: they being comparison and reciprocity
methods.

*For a 1ist of the various methods see table prepared by T. F. Johnston
appearing on pages 32 and 33 of Urick, R. M., "Principles of Underwater Sound
for Engineers," McGraw-Hi1l, N. Y. (1967).



47

Comparison method. The simplest and most direct way to calibrate a
hydrophone or projector is to compare it with a standard, In the case of
hydrophone calibration, a sound field is produced in an appropriate calibration
tank and the responses of a standard and the unknown hydrophones are compared.
In the case of projector calibration, the sound fields produced by the standard

and the unknown are compared.

In spite of the fact that it is necessary to have standards available in
order to use this method, it is the routine way transducers are calibrated.
Such standards are available on Toan or rental basis from naval agencies.

Reciprocity method. The reciprocity calibration method is more compli-
cated than the comparison method but requires no standard. It is based upon

the reciprocity theorem:

If a generalized force whose magnitude |J{ is applied

in any branch A of a system composed of linear elements and
a response |d| 1is measured in branch B , their ratio,
called the transfer impedance, will be unchanged upon an
exchange of the points of appliication.

Let branch A vrepresent the electrical branch for which the general-
ized force is the driving current (i) for the transducer acting as a
projector, and the response is the open-circuit voltage (V) produced by the
transducer acting as a hydrophone. Let branch B represent some point in
the acoustic medium for which the pressure (pB) at that point is the medium's
response produced by the projector driven by the current (i) , and the source
strength (Q)* at the point is the generalized force that produces the
open-circuit voltage response (V) 1in the transducer. The figure below
illustrates these points:

| B
o} :
A B

......_._] Q
v . ®

*0Or volume velocity, it has dimensions of L3771
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The reciprocity theorem states that

—_— = — (10°7) . III.5

The factor of 107 1is included because electrical units are usually (MKS}
and the acoustic units are (CGS).

The pressure produced at point B is related to the source pressure
(po) produced at the reference distance ry through some function g(r)
which describes the spreading law;

glrglpg = 9(rylp,

The pressure (pF) produced at the transducer face is proportional to the
strength of the source at point B ;

_ h(f
Ipel = 5%;%7 | I11.6

where the spreading law is included and the factor h may be a function of

frequency as indicated. These additional points are illustrated in the
figure below:

pG
I
| P
—{l__ B
'E-D \J—-’ : Y‘B e ()
— To L
] Q

Putting these equations into III.5 and rearranging results in



VI 7 pgl alro)
Po| /L | M)

(1077)

The right hand side is defined to be the reciprocity parameter J , i.e.,

g(ro) ;
= h—(ﬂ—— (IO“ ) ) I11.7
and the left hand side is the ratio of the receiver to transmitter responses,
therefore
a —
- = J I11.8

Note that J depends upon the transducer geometry through h(f) and on the
type of spreading through g(ry) . J may be obtained directly from
equation III.6 with rgy vreplacing rg -

As an example of determining the reciprocity parameter, consider a
planar transducer and a point close enough to the face so that the sound field
may also be assumed to be planar. The reciprocity parameter is found using
p = pcu with 2Au as the source strength (volume velocity with both faces

moving). Thus we find for equation III.6

p = 55 (2Au) = 52 Q

Hence the planar reciprocity parameter is

_ 2A

Yl x 1077

J

The spherical reciprocity parameter is

ZAPO
J =

s =S x 1077 ‘ 111.9

Proving this will be left as a problem in the set following this chapter.

49
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Transducer calibration by the reciprocity method requires three trans-
ducers: at least one reversible transducer (T) , one projector (P) , and
one hydrophone (H) . The three transducers are placed at the vertices of
an equilateral triangle as shown below:

Projector: Bp

. r .
Hydrophone: oy Transducer: ar > Bp

First, the projector is excited by a current i* and a voltage response UH

and VT are measured at the hydrophone and the transducer, respectively.

Then the transducer is excited by the same current i and the voltage response
Vé is measured at the hydrophone.

By reciprocity any or all of the responses, Uy s O Bp , and By » can be
calculated from the values of VH s Vﬁ s VT , r , i, and a knowledge of the
type of spreading. The calculations are as follows:

By definition of the responses,
VH = oyP,. 3 VT =P, Vﬁ = aHp’ IT11.10

and

o]
1l
gval

-
—
]
- -

o
1

= 81 . | ITI. 1
By reciprocity,

G = JBT . o I11.12

*Consider all currents, voltages and pressures mentioned here to be
RMS  values.



Let us assume spherical spreading, J = JS » then

B = _pro = p_r (Y‘ )
P i i g
B = .I?m = p_r- (r_)
T i i o

o

r
[

P
B Py
From the first and the last equations of III.10,

8. = Py (r !ﬂ = Eﬂ.(ﬁ.
“HP T T My .1 g
Vl
_ H,r
uHBT = ;—'(;GJ
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IIT.13

I11.14

ITI.15

I11.16

II1.17
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By reciprocity,

V
H
oy = J_Br v
H stT VT

By multiplying by Gy it is found that

VH
2 = —_—
*H JS(BTGH) VT

Then, substituting from LII.17 results in

ﬁ
2: — —rr —
o = Js 3 . v

Finally, the square root is taken:

a, = {J EE“EE.I;Ql/z
H s 1 VT ro

With this last equation and others above ar s Br > and Bp are readily

obtained.

I1I1.3. Special Calibration Techniques

IIT.18

ITI.19

For accuracy in calibration it is necessary that the sound field be as

free of reflections as is possible. This is achieved in either of two ways:
large systems operated at low frequencies are calibrated at facilities where

the reflecting surfaces can be kept as far removed as possible (i.e., deep

lakes) and short pulses are used. In these cases the calibration data is

taken on the direct pulse before the reflections arrive.

The pulses must

be greater in length than the reciprocal of the bandwidth of the system in

order that a steady state signal may be obtained, but short enough so that the

reflections do not interfere. For smaller systems operated at higher fre-

quencies, measurements are made in chambers with non-reflective walls
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(the reflected signals must be 20 to 40 db below the direct). This non-reflec-
tive property of the wall is achieved by special design of the vessel geometry
and wall liner material.

Broadband noise calibration techniques. A relatively quick and economical
way to calibrate small hydrophones employs a tank flooded with broadband
noise. The frequency response of a hydrophone is obtained by sweeping through

the desired frequency range using a narrow band-pass filter. Calibrations
repeatable to within £1 db over frequencies down to about 200 Hz can be
obtained for hydrophones smaller in Tinear dimension than about 10 inches.

Near-field calibration techniques. At a Targe distance from a projector
(i.e., far-field), the pressure varies as 1/r . In the near-field the pressure
variation is more complicated. Roughly, the distance at which the transition
to the far-field begins is about a2/)p where a 1is the maximum Tinear
dimension of the transducer and A 1is the wavelength of the sound projected.

It is the far-field response of a transducer that is sought when the transducer
is calibrated, but, because of space Timitations, it is the near-field response

that is measured when some very large transducers are calibrated.

The production of very large transducer arrays has prompted the develop-
ment of near-field calibration techniques. Personnel of both the Underwater
Sound Reference Laboratory, Orlando, Florida, and the Applied Research
Laboratory,* Austin, Texas, have expended considerable effort on this problem.

The method developed at ARL** is based upon Green's theorem which states:

fj (638 - 422) ds =fff {62y - yv2p)dV
s v

*Formerly the Defense Research Laboratory.

**Defense Research Laboratory Report No. DRL-A-196, "The Determination of
Farfield Characteristics of Large, Low-Frequency Transducers from Nearfield
Measurements," By D. D. Baker, 15 March 1962.
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where ¢(x,y,z) and ¢(x,y,z) are the pressures at the point P=(x,y,z)
due to the transducer and a simple source, respectively. As a result of
further development, it is found that the far-field pressure p{P) is
approximated by

. Jjkr :
p(P)z"%,U(HCOS g) E—p ds , I11.20
s

where B 1is the angle between the normal of the surface element and the Tine
joining the surface element and the point P . In practice the calibration
involves moving a small hydrophone probe over the surface S and measuring the
amplitude and relative phase of the pressure at discrete points. The far-field
pressure is then obtained from a numerical integration of III.20. It has been
found that accurate results can be obtained from a fairly small number of
measurement points.

I11.4. Beam Patterns and Directivity

The receiving and transmitting responses of transducers are generally
functions of spherical angles about the transducer. Let r represent
either o or 8 and let it be a function of the spherical angles (6, ¢),
i.e.,

r=r{e , ¢)

where ¢ 1is generally the angle for which there is the greatest symmetry.
r(0,0) 1is the response of the transducer in the direction of the acoustic
axis, and by definition of the acoustic axis r(0,0) 1is the maximum value of
r{e , ¢) .

Beam pattern. Let us define the normalized response v(8 , ¢) by

v(e , ¢) = : 5 . I11.21



So that v{0 , 0) =1 . MWe define the beam pattern b{e , ¢) by
b(e , ¢) = v3(6 , ¢) . I111.22

And finally, we define the decibel beam pattern by

B(e , ¢) [re b(0 , 0) = 1] = 10 Log b(s , ¢)

]

20 Log v(e , &) . 111.23

Note that the beam pattern is always in the interval zero to one and the
Log beam pattern is always zero or less.

ATthough arrays will not be discussed until the next chapter, we will now"
derive a formula for the beam pattern of a discrete point line array. After
the formula is obtained we will Tet the separation between elements go to
zero and obtain the beam pattern for a continuous line transducer. For this
development consider the diagram below:

e

Assume that the plane wave

- >

(X, y, t) = poej(k s o-wt) _ pOej(kxx +k,z - wt)

55
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is incident upon an array of N(=n + 1) hydrophones equally spaced along the
z-axis (x = 0) . The pressure along this axis is

_ o Jlkoz - wt)
P, = Pe” 2z

il

%1 sin 6 . The hydrophones are located at. z = md

where kZ = k sin 8
so that the pressure at the mth hydrophone is

o oJ(mu - wt)
Pm DQE
where
o 2nd .
u == sin 8

The voltage at the mth hydrophone 1is

- J(mu - wt)
m mPo® .

where o is the hydrophone's voitage response. We have neglected any relative
phase shift between the pressure at the hydrophone and the voltage generated
by it.

The output voltage is
n n
_ - -jwt z: Jmu
) 2: Vm poe o e
m=0 m=0

IT the sensitivity is independent of m then

n
y = oupoe'JWt :E: gJMu
m=0
It is readily shown that

n . (N-T)u . Nu
zejmuze‘]_Nu—1=e‘] 7 Sinj

U sin &

m=0 2
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Therefore, the voltage is

j[iﬂélly-- wt] sin %9

I111.24
. u
s1n—2~

Y = ap,.e

The output is a sinusoidal voltage of the same frequency as the pressure wave,
but shifted in phase by (N - T)u/2 vrelative to the phase of the first
hydrophone.

The beam pattern is the normalized response squared. It may be calculated
from the normalized mean square voltage, i.e.,

b(s) (@) ,
v2(0)
where
V(0) = ap,e™ "t (N)
and
V2 = gy

Then the beam pattern is

_ rsin Nu/2 -5
b(e) = [t u/zd”  » I11.25
where u = g%i sin ¢ . Note that b(0) = 1 and that the first zero in the

beam pattern occurs at gH-= T, i.e., for sing = %W

For a continuous 1ine array, N goes to infinity as d goes to zero.
These Timits are taken in such a way that Nd goes to L , the length of
the array. In this case
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sin (%L-sin 8)
mlL

TS1H +)

b(e) =

A similar development for a circular plane transducer gives

2
Zdl(gg-sin 8)
b(e) = w0 .
7 sin o

where D is the diameter of the plate and Jl(gg-sin 8) 1is the first order
Bessel function. In this case b(e) 1is also unity for 8 =0 , but the first
zero occurs at

D . -

7 sin 6 = 3.85
The graphs below illustrate the beam patterns of a Tine and a circular plate
transducer of length L and diameter D , respectively.* Also found below

o T T T T

T I I T T ]

N
. N Pione
= \':’—g.rray cr)f b {G/’! :9/,/ i
\ diometer ] |
\ Eé L
10}
s L
n
g -20
2
30}
-40 I
o] 04

Lo D .
Asm&or ksma

*From Principles of Underwater Sound for Engineers, by R. J. Urick,
Copyright (1967 McGraw-Hi1l, Inc.). Used with permission of McGraw-Hill
Book Company.




is a nomogram for finding the width of the beam pattern of line and circuiar

plate transducers.*

Holf beamwidit
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Recejver directivity index. Associated with the beam pattern is a
quantity called the directivity index. This quantity is a measure of the
ability of a transducer to discriminate against an isotropic noise in favor

of a plane wave signal.

If n2 represents an isotropic noise power per unit solid angle, the mean
square voltage produced by a non-directional hydrophone in the field is

N2 = 2 = Arpl
N2 g = constant -j-n‘dﬂ 4tn? (constant)

*From Principles of Underwater Sound for Engineers, by R. J. Urick,
Copyright (1967 McGraw-Hi1l, Inc.). Used with permission of McGraw-Hill

Book Company.
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The mean square voltage produced by the same hydrophone, with the exception
that it is directional with beam pattern b(e,4) , is

Ng = constant f'r?b(a,cp)dsz = constant n_2_[ b(e,s)dn

The directivity index is defined by

2
10 Log -nond

DI, = , [11.27
N2 -
d
50
DI = 10 Log . | S 111.28
_fb(e,qs)dg

The meanings of © and ¢ depend upon the general geometrical class of
the transducer. For plane transducers the angles are standard spherical
coordinate angles with the transducer lying in the z~plane. For linear
transducers, the z-axis is taken along the transducer; ¢ is a standard
spherical angle taken to be the angular measure around the transducer; and
8 s measured from the z-plane (rather than from the z-axis).

The figure below illustirates these points:
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The integrals over the solid angles are different in these two cases:
for the plane transducer

2w

j’b(e,(p)dsz =I j-ﬂ b(6,4) sin ededy

0 0
for the Tinear transducer

I
2t 2

fb(e,q;)dsz =f [ b(e,4) cos ededs

o Tz

Transmitter directivity index. The transmitter directivity index is
defined by

I

DI; = 10 Log II1.29

T I

nond

where IS is the source level of the projector with an output power P ,
and Inond is the source intensity of a non-directional transmitter outputting
the same power P . The figure below illustrates this:

Icb(e,0)

N ;s

nond

The power in the two separate cases is

P = -!}Sb(e,¢)d9 = IS‘!.b(8,¢)dQ , ¥

*Integral is over a sphere of unit radius; for that reason, the radius

need not appear in the equation.
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and

P = _['Inonddg = Al ond

These are equal so

4l nd = 1 fb(e,¢)d9

and

I
- S - Ar I11.30
nond fb(e,:p)dsz
The transmitter directivity index is
_ An
DIT = 10 Log —pm—imn——o 111.31
‘fb(e,¢)d9

which is the same as equation II1.28. That is, for the geometry and wavelength
(i.e., the same beam pattern), the receiver and transmitter directivity
indices are the same even though their initial definitions were different.

The following figure* is a nomogram giving the directivity indices for Tine
and circular plate transducers:

*From Principles of Underwater Sound for Engineers, by R. J. Urick,
Copyright {1967 McGraw~Hi11, Inc.). Used with permission of McGraw-Hill
Book Company.
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Later we will have occasion to use the directivity factor (d) which we
define by eguation II1I1.30

1
D i T I11.32
nond fb(e,q:)dsz
or by equation III.31
DI = 10 Log d I11.33

II1.5 Hydrophone Characteristics

Devices used in receiving underwater sound incorporate several elements:
the sensor (hydrophone), the preamplifier (or transformer) and preamplifier
housing, auxiliary circuits, and cables and cable connectors.
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The sensor converts the sound pressure into an electrical voltage. Since
the sensor is an electrostrictive element that is electrically egquivalent to
a capacitor with greater than 50,000 megohms of shunt resistance, a preamplifier
or transformer must be used to lower the impedance before driving a long
cable which generally has a great deal of capacitance (typically, 40 pF/ft).
Auxiliary circuits are used for calibration, tests, and other purposes.

Hydrophones used in the ocean must be "seaworthy," which means that they
must be capable of withstanding shipboard abuse, resist corrosion, biofouling,
and extreme hydrostatic pressure. They must be reliable since regular in-
spections are most often impractical.

Generally, it is desired that the hydrophone be shielded from stray
electrical fields. To accompiish this, often a screen-like metal grid surrounds
the sensing element and the preamplifier is shielded. These shields are
connected to a shielding on the cable which is grounded to instrument ground
aboard ship. A sea ground is to be avoided because it may cause excessive
ground-loop noise. This noise is caused by the large capacitance that exists
between the shielding and the electrical components in the hydrophone.

Modern hydrophones utilize completely independent internal shielding for the
sensor eiement and the auxiliary circuits. This external shield is electrically
insulated from the water-exposed metal housing.

Generally, preamplifier drivers for the cable are desired over inexpensive
transformer-coupled systems because the Tatter have more limited frequency
responses. Presently the most desired configuration is a lTow-noise field-effect-
transistor (FET) preamplifier in proximity to the sensing elements. The
preamplifier may or may not provide gain for its primary purpose is to reduce
the impedance driving the lower end of the cable.

Well designed hydrophone systems provide a precision 10-ohm resistor in
series with the sensor for remote calibration purposes. When this auxiliary
circuit is used a separately shielded cable is required to drive this circuit
in order to reduce crosstalk-feedback calibration error.

The diagram below illustrates those points:
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In addition to calibration, auxiiiary circuits may be used to remotely control

attenuation (to extend the dynamic range) and to limit the input signal in order
to prevent overioad caused by very strong acoustic signals,

II1.6. Projector Characteristics

The source intensity of a projector is determined by the acoustic power
output and the directivity factor (or index):

= 2 =
P 4wr01n0nd 4nr§IS/d -

or

I = (4ﬂr%)"1P = 0.95 x 1075Pp

nond
where vro{= 1 yd = 97.5 cm} 1is the reference distance for the scurce intensity.

Therefore

I. = 0.95 x 10-°Pd

S
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The "source level" is defined by

SL = 10 Log (IS/Iref) ; 111.34
therefore,

SL = 10 Log (0.95 x 10-5) + 10 Log P + 10 Log d - 10 Log Lot
Using equations III.33 and I.24 we find

SL =10 Log P + 71.5 + DIT . IT11.35

Cavitation. As has been pointed out, piezoelectric crystals are generally
limited in power output by dielectric breakdown and ferrcelectric ceramics by
mechanical breakdown. But it is possible in some cases for projectors made of
either of these electrostrictive materials to experience a more intrinsic
Timitation. This Timitation is cavitation which is a mechanical breakdown of
the medium itself.

Cavitation occurs when the net pressure (the instantaneous acoustic
pressure plus the hydrostatic pressure) is less than the cohesive pressure of
the medium. This cohesive pressure may be the vapor pressure of the medium
itself or the pressure at which dissolved gases in the Tiquid form bubbles.

When cavitation occurs there is a loss of linearity in the transduction as
the negative pressure half-cycles become "clipped," a reduction in directivity
due to scattering from the bubbles, a loss in transmitted power due to coupling
mismatch, and an increase in reverberation due to noise produced by the collaps-
ing bubbles.

As an example of the Tatter, it may be shown that a gas (other than water
vapor) filled bubble 1/10 cm® in volume collapsing to a pressure of 10 atms
will produce 1/40 watt of power. A water vapor bubble is not so noisy because
the vapor goes back into the 1iquid as the bubble collapses.



Let us define the cavitation threshold intensity (Ic in watts/cm?)
in terms of the peak negative pressure (pC in atms) which the medium will
support. Then

[0.707 x 108p 12

IC pC

-7 2
x 10 0.3 Pz

where 105 1is the conversion factor between atmospheres and dyne/cm? and
the 0.707 is the conversion between peak and rms pressures. For example, the
cavitation pressure of 1 atm 1is equivalent to the cavitation intensity of
0.3 w/cm? or 2 w/in?

The cavitation pressure varies with depth approximately as
= Z_
pC(z) - pC(O) + 33

where z is the depth (positive downward) in feet, pC(O) is the cavitation
pressure at the surface which is given by

p(0) =1 +T

where T s the tensile strength of the medium in atmospheres.

The cavitation intensity is given by
= P
IC 0.3[pc(0) + 33] . ITI.36

The actual cavitation intensity may be as much as 50% lower than this value
because in reality we may not have plane waves as is assumed here.

Cavitation appears to be dependent upon the history of the medium so that
high frequency and short pulse projectors may operate at higher power than Tow
frequency and long pulse projectors.

*Rule of thumb values for cavitation intensities are 1 w/cm? at the
surface and 7 w/cm? at 100 feet.

67
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PROBLEMS

a) What is the open circuit response of a hydrophone that produces a
rms voltage of 3 millivolts in a sound field having an rms pressure
of 6 dyne/cm? (in decibels)?

b} What rms voltage is produced by a hydrophone with a response of
-80 db ref 1 volt 1in an rms pressure field of 0.6 dyne/cm??

c) What is the source level of a transducer having a transmitting current
response of 96 db and driven by 0.1 amp peak-to-peak (twice amplitude)
sinusoidal current?

Show that the spherical reciprocity parameter is given by equation III.9.

Determine the relations for ar > 8p s and By used in equations III.10
and IIT.17.

Show that
3 n »
v = oapoe"‘]Wt 2: gl
m=0

re@uces to equation I111.24. (Begin by multiplying the summation by
(e - 1))

Determine the directivity factor for a continuous Tine transducer of
length L assuming A >> L .

What is the source level of a sonar operating with an input electrical
power of 200 kilowatts, directivity index of 20 db, and 40% efficiency?
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IV. ARRAYS AND SYSTEMS

Up to this point, with the exception of the development of equation
II1.24, we have considered only single element hydrophones and projectors and
very simple arrays of non-shaded, non-phased, and non-directional elements.
Many sonars in present operation use more complicated systems involving a
variety of transducer elements electrically coupled in a variety of ways. In
this chapter we shall discuss several of the more important aspects of these
sonar arrays.

In the previous chapter the open circuit voltage response of a hydrophone
(or the pressure response of a projector) were considered to be real (i.e.,
phase shifts were neglected), and, for the array discussed, the response of each
element was assumed to be non-directional and all responses were equal. In
this chapter we shall see the effects of removing each of these restrictions.

First, let the response--we shall use the open circuit voltage response
(a)--be complex and defined by
o = aeJG s
where o« is the magnitude as defined previously and & is the phase shift
between the cause (pressure) and the effect (voltage}. Also let the response
of each element in the array be, in general, different and directionai, i.e.,

NE
e, = o (8:4)e ;

where m labels the element.

A general expression for the voltage response of an additive array of
N hydrophone elements to a sinusoidal plane wave is
N-1
- pet Y R
V= pge o exp{j{k ro * 6m)} , Iv.1
m=0

where [1 is the propagation vector and ;m is the position vector of the mth
element.
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. The gquantity E-?m Tay be expanded by carrying out the dot product using
o = (xm, Y2 zm) 3nd k = (k cose, k sine cos¢, k sing sing) where k is
the magnitude of k and e and ¢ are standard spherical coordinate angles.
But we are interested only in the fact that the dot product is a function of
(6,9). Let

> &
A (es0) = kery

The beam pattern is defined by

b(e’¢) = Eziﬁgil

" 72(0,0)

which reduces to

. 2
(6.0 - za, (0,6) exp{i(s (6,¢) + o)1)
2 (0,0) exp 3(a (0,0) + & )|

We shall now discuss certain aspects of this formula.

Product theorem. The product theorem states: the overall beam pattern
for an array of identical directional elements is the product of the beam

pattern of an element and the beam pattern of the array of non-directional
elements.

To demonstrate this theorem we use equation IV.2 but set

i}
fl

u(e’¢)

o = 0] ¥ G

and

o2
1
o2
—
I
=2
el
1
1
o



Then

2
ble,s) = 2{8:0) 2 explin (6.9)1]
a?(0,0) |z exp{jAm(O,o)}J

It is obvious that we can separate this into the part due to the directionality
of the elements themselves (be(e,¢)) and the part due to the geometry of the
array (ba(e,¢)) . Thus, the product theorem

b(e,4) = by(e,¢) - b, (e,¢) . V.3

Electronic steering. An array may be steered, i.e., the acoustic axis
turned to various directions, by either physically rotating the array or by
providing prescribed phase shifts to the various elements; the latter is
called "electronic steering." The general case of electronic steering is too
complicated to be instructive, so we shall discuss the technique in terms of a

simple case.

Consider the line array illustrated by the figure below:

Non-steered array Steered array
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If each element is phase shifted such that

[=4]
I}

wt = wSm/c = kS, = kmd sin 8q ,
where
w is the angular frequency of the signal,
t_ is the time delay introduced at the mth element,
S is the effective spatial displacement along the 1ine @ = 05
¢ 1is the speed of sound, and
k 1is the wave number of the signal,

then the Tine array will, in effect, be rotated by the angle 8, , and the new

beam pattern will be almost the same as the old but pointed in the new direction.

The beam patterns will not be exactly the same because of a modification
of the length. The effective length of the electronically steared Tine array
will be

L' = L cos &g s

so that the new beam pattern will be broader.

A more general discussion would begin with equation IV.2. Invariably,
some approximations would be made so that a simple rotation of the original
beam pattern will describe the new beam pattern for small rotations only.
Steering through large angles will not only broaden the beam but, in general,
distort it aiso.

Shading. Shading as applied to sonar arrays is a method by which some
additional control of the beam pattern is obtained. Shading involves using a
prescribed variation among the individual element responses. Making the array
more responsive at the center than at the edges will broaden the beam but
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reduce the side lobes as compared to an unshaded array, and making the array
more responsive at the ends will produce a narrower main beam but at the expense
of increased side lobes. Two common forms of shaded linear arrays are the
binomial shaded and the Dolph-Chebyshev shaded arrays.

Binomial shading involves taking the response of each element relative
to the maximum response at the center to be in accordance with the coefficients
of a binomial expansion of degree (N-1) where N 1is the number of elements.
For example, in the case of a six element array the relative responses are
0.1, 0.5, 1.0, 1.0, 0.5, and 0.1. Binomial shading produces the narrowest
main love with the total absence of side lobes.

The narrowest possible main lobe for a gfven side Tobe ievel is achieved
through Dolph-Chebyshev shading. This involves shading in accordance with the
coefficients of Chebyshev polynomials., For example, in the case of a six
element array the relative responses are 0.30, 0.69 1.0, 1.0, 0.69, and 0.30.

Below is a graph illustrating the beam patterns of the unshaded, binomial
shaded, and Dolph-Chebyshev shaded arrays of six elements: '

Unshaded

— — Binomial shaded
— + =~ Dolph-Chebyshev shaded

20 Log b

\ \ /\.\

i
0 20 40 60 80

Array gain. The concept of receiver directivity index is applied to the
situation of isotropic noise and plane wave signals. An extension to cover the
more general situation brings us to the quantity array gain.
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Let s2(6,6) and n%{(e,) represent the signal and noise powers per unit
solid angle, respectively, as a function of the spherical angles, as indicated
in the figure below:

s7(8,9)

{452'(9,(@)

do

Let us adjust the signal level so that it is equal to the noise level when
measured by a non-directional hydrophone, i.e.,

52 = f?dsz= n2 do = N2
4 aq

Therefore, the signal-to-noise ratio when measured by a non-directional hydrophone
is 0 db. We now define the array gain of a directional array having a beam

pattern b{e,s)} to be

JSZ (8,4) b(e,s) do

= V.4
JnZ (0,0) b(o,¢) dn

AG = 10 Log

Therefore, the array gain is a measure of the signal-to-noise ratio of an array
in decibels above a signal-to-noise ratio of zero as measured by a non-directional
hydrophone. WNaturally the array is designed to be better than a non-directional
hydrophone so that AG is always a positive number of decibels. For a uni-
directional signal in isotropic noise, array gain reduces to directivity index,
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PROBLEMS

1.  Show that in the case of an acoustic field that has unidirectional signal
and isotropic noise the array gain reduces to directivity index when the
array is normal to the signal direction.

2. Since a product theorem applies to the beam pattern of an array, does a
simple theorem (e.g., "addition theorem") apply to the directivity index?
Discuss answer.
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V. SONAR EQUATIONS AND PARAMETERS

Let us begin our discussion of sonar equations with a rather simple
acoustic situation and formulate the problem in terms of a multiplicative
echo-ranging equation similar to that found in radar technology.

Given a source of source intensity IS in a noiseless medium and a
spherical target of radius a and reflectivity B , we seek the intensity
of the echo Ie . lLet the target be at some large range (relative to one
yard) and assume that, due to spreading and attenuation, the intensity at the
target will be reduced from the source intensity by the factor o . Then

aIS is the intensity at the target;

aISwa2 is the power intercepted by the spherical target;

77

BaISﬂa2/4ﬁR2 is the 1intensity of the reflected signal at the distance

R from the center of the target along the axis joining the

target center to the source {cf., equation I.14; although the

reflecting sphere, treated as a source, is not isotropic, it
is approximately so along this axis);

BaISa2/4 is the reflected intensity at one yard from the target
center; and

8a215a2/4 is the echo intensity (Ie) received back at the source.
The result is, therefore,
= an2
Ie Bo, ISa /4

This is a multiplicative form of the echo-ranging equation for acoustics
analogous to that used in radar.
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Sonar technology uses an additive form of this equation obtained by
converting to decibels, that is, divide by Iref » take the logarithm, and
multiply by 10:

I 2.2 1
10 Log T“?';f 10 Log [222- (—I-—S?]
re re

This results in the echo level (EL)} ,
ELL = SL + 20 Log o + 10 Log Ra?/4

The quantity =~10 Log o is the one way transmission Toss (TL) and
10 Log Ba2/4 is the target strength (TS) for a sphere of radius a and
reflectivity 8 . A more general definition of target strength will be given
later but it should be pointed out with this simple example that it is a
positive quantity when Bge? > 4 (in the case of unit reflectivity, when
a> 2 yd).

The equation for the echo Tevel in this simple case is
EL = SL - 2TL + TS . V.1

But the equation is quite general and applies to any echo-ranging problem for
which the transmitter and receiver are gquite close together.

The transmission loss term includes signal reduction due to spreading and
attenuation (absorption and scattering). In the case of spherical spreading
(inverse square law) with no attenuation,

TL = =10 Log (1/r2) = 20 Log r

where r s in yards to be consistent with the previous definition of source
level.



V.1. Various Forms of Sonar Equations

The basic problem in sonar is to measure some signal (possibly an echo)
against a background of noise (or reverberation). In order that the signal
may be detected above the background, the ratio of the measured signal to the
measured background ("signal-to-noise ratio")} must be at least some minimum
value that is determined by the system.

Let DT (detection threshold) be the minimum detectable signal level
(MDS) when the noise level (NL) is zero decibels, that is, DT is the
minimum detectable signal-to-noise ratio. We express this by the following
equation:

DT = MDS - NL* V.2

Generally, the design criterion for a functional sonar can be expressed
by the following inequality:

SIGNAL > MDS = DT + NL V.3

The basic minimal operational condition for sonars is represented by
equation V.2 and may be iTlustrated with certain cases:

e The signal is the echo level given by equation V.1, the noise is

isotropic and of Tevel NL , and the receiving hydrophone is non-direc-

tional; equation V.2 becomes
SL-2TL+TS - NL=0DT . V.
In this case the system is said to be noise Timited.

e The system is same as above except that the hydrophone is directional
with directivity index DI ; equation V.2 becomes

SL-2TL+ TS - NL +DI=0DT

*In this equation and those that follow NL is the spectrum level. The
10 Log W that should be present is absorbed into DT.

79
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e The system is the same as above except that the transmitter is putting
so much energy into the water that the reverberation level RL (the level
of the backscattered source energy as measured by the hydrophone)
exceeds the measured noise level; equation V.2 becomes

SL-2TL +TS -RL+AG=DT ,

where AG 1is array gain which must be used instead of directivity index
since RL s not isotropic. In this case the system is said to be
reverberation Timited. Some advantage is gained in a noise Tlimited
system by increasing the output power, if feasible, until the system
becomes reverberation limited.

@ The system is one in which the transmitter and receiver are separated
by an appreciable distance (bistatic echo-ranging sonar). The trans-
mission losses to and from the target are not, in general, equal;
equation V.2 becomes

SL - TLy - TL, + TS = NL + DL, + DI, = DT

T R

This assumes that the projector and recejver are pointed at the target.

® The system is passive and the hydrophone is pointed at the target of
target source level SL ; equation V.2 becomes

SL-TL - NL +DI = DT

These equations are used in the design or performance prediction of a
sonar system. For a given sonar system with a specified detection threshold
acting against a target of known strength in a known noise environment, one
may seek the source level needed to attain a certain range or the range attained
for a given source level,

The previous discussion of the sonar eguations is valid for long pulses
for which the effective emitted and received pulse durations are about the
same, If this is not the case a modification of the source level is required.



The source level SL must be replaced by the effective source leve] SL'
defined by

SL' = SL + 10 Log ty/,

where T, and T, are emitted and echo pulse durations, respectively.

V.2. Sonar Parameters and Their Various Combinations

The various terms in the sonar equations are called sonar parameters.
For their definitions and reference locations see Urick (1967), p. 21.

These parameters may be grouped according to whether they are determined
by the equipment, medium, or target. This grouping is as follows:

Equipment Parameters
SL : Source lLevel
DT : Detection Threshold
DI : Directivity Index
NL : Self-Noise Level
AG : Array Gain (also determined by medium)

Medium Parameters
TL : Transmission Loss
NL : Ambient Noise Level
RL : Reverberation Level (also determined by equipment)

Target Parameters
TS : Target Strength
SL : Target Source Level

Oceanographic interest in marine acoustics is concentrated mostly in the
parameters determined by the medium.

81
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Various combinations of the sonar parameters have also been given names,
for example, as we have already seen SL - 2 TL + TS 1is the echo level,
NL - DI is the noise measured at the hydrophone terminals, and SIGNAL - MDS
is the echo excess.

PROBLEMS

1. Given an active monostatic sonar having a source level of 115 db, a
receiving directivity index of 12 db, a processor giving a detection
threshold of 20 db, and assuming a noise (spectrum) level of -40 db and
spherical spreading, find the maximum range at which a target of strength
15 db may be detected.

2. We would like to study the deep scattering layer with a system employing
a 100 watt power amplifier, a projector that is 40% efficient, a receive
and transmit directivity index of 5 db each, and a processor giving a
detection threshold of 23 db. Assume that a DSL of target strength equal to
-40 db is at a depth of 400 yd, the spreading is spherical, and the noise
(spectrum) level is -50 db., Can the DSL be detected in this environment
with this system and what is the echo excess or deficit?

3. We would like to design a shallow water transmission experiment. All the
parameters of the system are fixed except the power. These parameters are:
projector and receiver directivity index, 22 db; projector efficiency, 30%;
detection threshold, 10 db. Assume a background noise (spectrum) level of
-30 db, cylindrical spreading and attenuation of 1 db/kyd. What is the
minimum power required from the amplifiers in order that a signal may be
detected at a range of 10 nt. miles?

4. A Tong-pulse sonar of source level 130 db, receiving directivity index of
10 db echo ranges against a target of strength 20 db. In a noise back-
ground spectrum level of -30 db and with BT of +10 db, and if spherical
spreading is assumed, what is the waximum range for detection?



5.

A fish-finding sonar is to be designed to detect a fish school of target
strength 0 db, at a range of 1000 yd. It is to operate at 50 kHz, have

a source level of 100 db and the echo must be 10 db (BT) above the back-
ground noise of -40 db. Assume spherical spreading with an additional
absorption loss of 15 db. How large a diameter must a circular plate
transducer have in order to just accomplish this? Considering cavitation,

would you think that this system would function with the transducer near
the surface?
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VI. THEQRY OF SOUND PROPAGATION

According to a simple theory, sound propagates in the sea in a manner

that is controlled by a linear, second order partial differential equation

known as the "wave equation." This equation is obtained from four basic

equations:

1.

The equation of continuity (the mathematical expression for the Taw
of conservation of mass),

%%+V.(p'§)=o VI.1

where
p 15 the density of the fluid,

U is the particle velocity.

Equation of motion {Newton's second law as applied to small volumes
of a fluid),

- 3 >
‘F = 5{— (pu) . VI-Z

where
f is the force per unit volume,

Force-pressure relation,
-+
f=-9p . i VI.3

The equation of state (which in this approximate theory is taken to
be an expression of Hooke's Law),
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where

Subscripts 0 and e stand for equilibrium and excess, respectively,
and k 1is the bulk modulus. It is assumed that the equilibrium
values are independent of space and time.

The wave equation is obtained from the above equations as follows:
The force-pressure relation and the equation of motion are combined to obtain

3
-vp = 3{‘(@3)

(This equation may also be called the equation of motion.) The divergence of
this equation is taken, the order of the differential operators on the right is
changed and the equation of continuity is used to obtain
vzp = ?..%E.. N
at2
where v2 s the Laplacian operator. Since the equilibrium values are assumed
to be uniform in space and constant in time, this equation reduces to

2
Bpe

at?

2y =
VP,
Using equation VI.4 and the definition
2=k VI.5
Po

where ¢ will Tater be shown to be the sound speed, the above equation
reduces to the wave equation in either of two forms:

v2p -~ — 2 =g VI.6
c? 3t2
and
2
vep - L3P - g V1.7
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where p and p , without subscripts, now, and throughout the remainder
of these notes, mean the excess or "acoustical” pressure and density,
respectively.

These wave equations are solved by two basic approaches: wave theory and
ray theory. In the wave theory approach functional solutions of the linear,
second order partial differential equation and a set of boundary conditions
are sought using standard techniques. In the ray theory approach a specific
form for the solution is assumed and inserted into the wave equation to obtain
another equation known as the "eikonal equation.”

VI.1. Wave Theory
The general solution of the wave equation with constant c is
-5

> > -
p(r,t) = f(k « r - wt) + g(k - r + wt)

where ¢ = w/|k| . Or in one dimension

It

p(x,t) = f(x - ct) + g(x + ct)

This solution is easily verified by direct substitution into the wave equation.

If either g or f 1is zero, thq solution represents a rigid wave form
propagating in the direction of the positive or negative x-axis, respectively.
This is readily shown; for example, by taking g = 0 and asking when will
f(x; - ct;) be identically equal to f(x, - ctp) . The answer is when

Xl - Ctl = X0 - Ctp_
or when

Xz = X1
R

Thus showing that ¢ 1is the speed of propagation and the motion is toward
the positive x~-axis.
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The same may be done with f = 0 . In that case we find that g(x + ct)
represents a wave form propagating with the speed -c , i.e., in the direction
of the negative x-axis. If both f and g are non-zero, then no rigid
profile exists and no specific direction or speed of propagation can be assigned
to the motion of the total profile., If f and g are identical, then a
standing wave exists.

To obtain the actual functions that satisfy the wave equation it is
necessary to have boundary and initial conditions 1n addition to the wave
equation jtseif. We will consider two methods of obtaining solutions to
specific boundary value problems involving the wave equation.

The method of separation of variables with application to the wave eauation

in one dimension. Suppose we wish to solve the wave equation in the form

2 2
ap _1.3%p _ VI.8
ax%  c? at?

subject to the boundary conditions
p(0,t) = 0

and

ap =
o5 (Lt} =0 * V1.9

and the initial conditions
p(x,0) = f(x)
and ¥1.10

L (x,0) = g(x)

*These boundary conditions are appropriate for acoustic propagation in a Tayer

with acoustically soft {(e.g., water-air) and hard (water-rock) interfaces,
respectively.
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The above example describes a "boundary value problem" the solution of which
we may obtain by the method of separation of variables, viz., we try a solution
in the form

p{x,t) = X(x) T(t)

This trial solution is substituted back into the partial differential equation
and the result is divided by the solution to obtain

TII

X" t
T(t

X
X{x

an e

where the primes represent differentiation by the argument of the function.
We see that the RHS is a function of t alone and the LHS of x alone;
therefore, they must both be constant. Set them equal to a constant -k2 ,
so that

X'"(x) + k2X(x) =0 YI.11
and
T'(t) + w2T(t) = 0 i1z
where w? = k2¢2
The boundary conditions become
X(oy =0,
and VI.13
X'(L) = 0

Equations VI.11 and VI.12 have the solutions

X(t) = pedkX 4 pemdkx VI.14
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and
T(t) = cedWt 4 pe~I¥Wt VI.15

For equation VI.14 to satisfy the first boundary condition of VI.13, it is
necessary that

A+B=20
So we et
1 _a =
Z}ra~A~-B
Then
X(t) = %j-a (ejkx -e_jkx) = a sin kx . VI.16

And to satisfy the second condition it is necessary that
X'(L) = -ak cos kL =0 ,

therefore, k has discrete values, kn , which satisfy

K = 2n il

n 5 n=0,T,..., . VI.17

I £

Let us digress a moment. We have the differential equation
n 2 -
Xn + kn Xn 0 VI.18
where the Xn is a solution given by

Xn =a, sin knx VI,19

corresponding to the nth value of k which is given by equation VI.17. The
above problem with its boundary conditions forms an eigenvalue problem with
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eigenvalues kn and eigenfunctions Xn . ¥

To analyze the time dependence we recognize that we must label the
solutions of equation VI.15 by n to correspond with the nth value of w
which is equal to knc % An alternative way of writing the solution is

Tn(t) = cos(wnt + en) s

where the coefficient is suppressed since it may be included in 3,

Solutions satisfying the wave eguation and boundary conditions {normal
modes) are

pn(x,t) = a, sin k x cos (wnt + en)

The general solution may be formed as a sum of all the normal modes, 1i.e.,

o]

p(x,t} = :E: a, sin knx cos (wnt + en) . VI.20
n=0
This solution satisfies the initial conditions provided

oo

f(x} = a, cos 8 sin knx
n=0
and
g{x) = - :E: wa, sine sin knx
n=0

*Later we will have occasion to call a solution such as Xn a "normal
mode {of vibration)."

**kncn actually, but we assume that the speed of acoustic propagation is
independent of the wave number.
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The set {sinﬁgﬂ—gtllfiﬁ is orthogonal in the interval [0,L] with
normalization
=_E:. *
N 5 . VI.21

Therefore, the coefficients (a's) and the phases (e's) may be determined
from

L
a cos 8 %—j f(x) s1nLM)T'—x dx

0
and VI.22
L
- ﬁj g(x) s-in..(.z..r.l?-f__]_)i.x_ dx
n

0
These last equations may be solved to give a and Bn separately.

a_ sin s
n n

*Proof:
L ) L
j sin[-(—-——)—-ZRZ; DXy gqpp{2dt 1)mx 2: LPLES T =f sin m{x sin -r-‘ll_f—& dx
0 0
where
m=2k42~] , N AES
This is
sin(m - n}n _ sin(m + n)r _ 4 m2 # n2
m - n) £{m + n)
or

L
N=j sinsz—x-dx=% ms=n
0
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The figure below illustrates several normal modes of vibration consistent
with this problem:

&

The Green's function method. The method of separation of variables works
in only a few coordinate systems. What is really needed is a method of solving

the wave eguation which would apply to all boundary shapes. The formulation in
terms of the Green's functions is a step in that direction. We shall develop
the Green's function method and use it to develop the Helmholtz integral formula
for a field set-up by a point source in a certain bounded space.

Let us attempt to solve the wave equation in the form

V2¢l - _]____ 82¢I

¢Z 3t2

= 4! . V1,23

where ¢' = ¢'(F,t) is the velocity potential, pressure, or density, and
v = p'(r,t) s a source function for acoustic energy. Let us assume a
harmonic time dependence* for ¢' and o' of the form

o= p(F)e Wt

*Not particularly restrictive since we may eventually sum over the
frequency components.
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In this case equation VI.23 reduces to
v2¢ + k2¢ = _4-ﬁ-¢ VI.24

where k2 = w2/c?

Let us also consider the function G{(r,ry)} called "Green's function"
which satisfies

v2G + k2G = -4ns(F - ¥o) * VI.25

and certain boundary conditions determined by the problem. Green's function

is the field set up by a point source in a space with boundary surfaces con-
sistent with the problem at hand.

We now multiply equation VI.24 by G , equation VI.25 by ¢, and subtract
to get

Gv2¢ - $V2G = -4uGy + drgps(F - Fy) . VI.27

* §(F - ¥o) 1is the Dirac delta function defined by

0

4 =¥
~H.
o

1l
=y =¥
[ ]

1) s(F - ¥g) = {

(=]

0 if ?0 not in V

2) .UjV §(F - FoldV L VI.26
3) fﬂv F(F)s(F - Fo)dv = :
¢
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We now integrate over a volume V enclosing ?0 to obtain
fﬂ' [6v26 - ¢v2GIdV = -4HMG(?,?G)w(?’)dV + 4u¢ (Vo)
¥ i
We may write the LHS as

jjj v« {Gv¢ - ¢vGldY
v

as may be verified by carrying out the operation. Then, by the divergence
theorem we may write the LHS as a surface integral

jf {Gvé - ¢VG} - ndS
S

where 7 s the outward normal on the surface. We then write the LHS as
3 _, 36
jj; {G an ¢ an} s

where g-—n— is the normal derivative at the surface. Putting this back into
the equation, solving for ¢(_Y3:[)) , and letting TFO become v and ¥

become r' we find
* _.Uj | ) |‘ 1 ﬂ ¢ 3G .
s(r) = y Glr,r" )y(r')dv' + yi A {G i wan.}ds , VI.28

- . .
where r represents an observation point.

If there are no sources in V (i.e., ¢ =0 forall ¥ in V),
the volume integral is zero, or, if there are no surfaces in the problem, the
surface integrals are zero. The two surface integrals are not independent and
one may be eliminated by choosing either of the boundary conditions

G=0 on S if ¢ 1is knownon S ,
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or

3G _ .o 99 .
i 0 on S if TR known on S
Green's function is obtained by solving VI.25 with the appropriate boundary

condition.

We conclude therefore that, if the appropriate Green's function, source
distribution, and boundary conditions are known, a complete solution of the
boundary-value problem may be obtained.

This is a perfectly general approach and, in theory, will solve many
wave problems that separation of variables can not. But, in practice, analytical
solutions may be obtained for simple geometries only because Green's functions
can not be obtained analytically for complicated surfaces. However, numerical
solutions have been obtained for complicated geometries using the Green's
function method.

The Helmholtz integral formula. It may be shown that the "free space
Green's function,"

a(r,r') = & = , VI.29

satisfies equation VI.25. While this Green's function is particularly suited
for use in unbounded space, it may be used in any space. However, it satisfies
no particular boundary condition so all terms in equation VI.28 must be used.

With this Green's function equation VI.28 reduces to

JkR ' JKR
5(F) = —}L;T-ﬂ;{e =) i L (& s

I sy 22
+ wir') R dv’ . VI.30
v



If there are no sources in V (i.e., w(¥') =0 for all ¥' in V) then

ikR kR
>y 1 ﬂ e 3 (r') iy 9 e \
o(r) = - A g e - ¢(r') 5 (Fg)ds VI.31

The above equation is known as the "Helmholtz integral formula," and is used
to determine the field in an enclosed volume containing no sources while the
values of ¢ and its normal derivative are known on the enclosing surface.

The eikonal equation. Ray theory, good for high frequencies, is based

upon an equation called the "eikonal equation." The eikonal equation is
obtained from the wave equation by assuming a solution of a particular form
and substituting the soiution into the wave equation.

The solution is assumed to be

s = ned (Ko - wt) VI.32

where A and W are functions of the position vector v, and kg is a

constant., When this is put into the wave equation and the indicated operations

are performed, one finds

2
v2A - k2A |VW|2 + HE-A + 2jkgUA - VW + jkoAV2H = 0
c

For the equality to be valid, it is necessary that both the real and the
imaginary parts be zero:

A%VZA
¥1.33

2 2
|vw|2z - 2 - VA |
k%c2 k%A 42

and

AvZW + 2vA « W = 0 ) VI.34

97
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If the RHS of VI.33 is small (that is, if A 1is not a strong function of the
coordinates and if A5 s small), the equation becomes

C2
|7H|2 - — =0
c?
or
|VW[2 - n2 = 0 VI.35

where ¢3 = wz/kg and n? = c%/cz. h s the index of refraction and may
be dependent upon the position vector [

tquation VI.35 is called the eikonal equation and W is called the
eikonal. The eikonal W(¥) 1is a surface in three-dimensional space that can
be associated with wave fronts (i.e., surfaces of constant phase). This is
readily seen if the phase of VI.32 is equated to a constant at a particular
time (t5)

wty - koW = constant

Then

wty -~ constant

W(r) = " VI.36
0

which describes a surface in space. Ray trajectories are everywhere perpen-
dicular to the wave fronts and hence are also determined by equation VI.36.

An equivalent way of formulating ray theory is based on Fermat's principle

for the trajectory of rays. This principle states that the path a ray will
take in going from point A to point B
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is such that the time
B

t = ds
c(s) :
A

where c¢(s) 1is the speed of sound as a function of the parameter s , will be
an extremum. '

Both approaches lead to Sneli's law in a continuum:

¢ _ ¢! N
cos 8 cos 6¢ Sy o vI1.37

where Cy is a constant for a given ray and @ 1is an angie as shown below:

s X

wave front

A ‘\\\\\\d/zgkzzijl(w(x,z) = const)
/N

The physical significance of c, may be seen by letting & = 0 . Thus,
we see that Cy is the velocity at the point where the ray becomes horizontal
and therefore is different from one ray to the next. This point is called
the "vertex" of the ray and Cy is called the "vertex velocity."
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The ray method determines the location of a ray and its time of arrival.
With certain limitations ray theory can also yield transmission loss. Consider
the diagram below:

Y

The elemental areas, 4A; and 4A, , are given by

H

ARy = (5040) (x1867)

il

My = (Ah cos 85) (Xo88,)

where ¢ measures angles out of the (x,z} plane and all other symbols are
defined in the above djagram.

If we assume that no energy is absorbed nor leaks out of propagation tube,
the power at the two points are equal, i.e.,

Pp =Py
Then,

18R = I,AA, ’



101

which may be solved for the ratio of the intensities to give

I; AR,  (ah cos 85)(Xp405)
I, &Ry  (s126)(X12471)

Assuming

>
—
12

Sy €OS 67
and
Apy = Ldp = Ad

(the Tatter is tantamount to assuming that there are no horizontal velocity
gradients), the intensity ratio reduces to

Il Xzﬂh Co

I, s%ae ¢
where according to Snell's law

COS 6, C»

€os 91 C1

The transmission Toss is defined as

I
TL = 10 Log —
Iy

where I; 1is the intensity at one yard. Therefore s; =1 and

Xphhcy
AGCy

TL = 10 Log VI.38
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This formula is used to calculate transmission loss from a ray diagram;
Xo 1is the range of interest, ¢; and c, are the sound speeds at the source
and the point of interest, respectively, 486 1is angular separation between
chosen rays at the source and aAh is the vertical separation between those
rays at the point of interest.

VI.2. Reflections

Let us consider the reflection and transmission of a plane acoustic wave
at a plane boundary between two media having different densities and sound
speeds. Let {x,y,z} be a coordinate system such that the boundary is the
z =0 plane, and let the x-axis be parallel to 1ines of intersection of the
wave fronts and the z =0 plane. In this case we may treat the wave in the
two coordinates, y and z . Finally we let the plane wave,

- >

g Wit)

p; = Ae s VI.38

be incident upon the z = 0 plane with an angle 0, measured from the normal
to the plane.

A reflected wave (pr) and a transmitted wave (p,) given by

It

-+ -
P, =B gk + - wt) VI.40

and

s >
b, = C edlkz = ¥ - wat) VI.4]

will be generated at the surface, where the coefficients B and C may be
complex to account for phase shifts.
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c1€)

D2 L]

The ?'s are the propagation vectors and the [ ?'s are

[P Ei-( sin 6. + z cos 6,)

i aq v i il
> - ]

k r=—(ysine_ -zcosoe.) .

r €1 r r VI.42

and

> > W2 )

ky » v = E;-(y sin 6, + z cos 0,)

2

Let p; and p, be the solutions of the wave eguation

3%p . 32p _ 1 23%p
3z2  sy? 2 »at2

in the regions z >0 and z < 0 , respectively. They must satisfy the
boundary conditions
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pl(yso) = pZ(y:U) )

and

LI L VI.43

The last requires that the normal particle velocities in the two media be
the same at the boundary. The wave p; in the upper medium is the sum of
the incident and reflected waves, i.e.,

PL=P; *P, - VI.44

Since the boundary conditions must apply at z =0 for all y and t ,
the exponents of Pi > Pp s and p, must all be equal. Therefore,

W S WS Wy W

(i.e., there is no frequency change at the boundary), and

sin 6. in sin o
3 ) Si Gr ) 2

Cy C1 Ca

This latter equation results in Snell's laws, i.e., the law of reflection

and the law of refraction

sin 81 sin 8o

o = 3 VI.45




The acoustic waves may now be written

y sin 6, z cos 8;

Py = A exp{w( St - t)}
Yy sin 87 z €os 8,
Py = B exp{iw(—p— - ——— - )}
and
_ ysine;p zcos e,
p, = C exp{jw( & + & - t)2

We have forced a sinusoidal solution on the field in the Tower medium in the
vertical direction and, therefore, must be prepared for an unusual treatment
of the cosine function.

Applying the boundary condition at z = Q0 , we have

pf + pr = Pg

and IV.46
cos 8y Cos 84
5701 (pi - pr) YR Po

Upon dividing both equations of VI.46 by Py and defining the "reflection
coefficient" by

R = pr/pi V1.47
and the "transmission coefficient" by

T =pa/p; - V1.48

105
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We find
T=R+1
and
Cos 03 cos 85
(1 -R) =
P1Cy p2Ca

Remember that R and T are in general compliex. You may have trouble under-
standing the physical meaning of these coefficients until you get to the
section on intensity.

The above equations may be solved for R and T resulting in

cos 04 Cas 6,

PiC1 p2C2
R = o586 cos 5,
pP1C1 ¥ P22
and
2 CO0S By
P11
T =

" cos 8, cOS 8,
+

P1C P5Cy

Multiplying both equations above by p,c, and letting m = p,/p; and
n=cy/c, {the relative index of refraction for the two media) results in

m cos 8; - n cos 8,

" mcos 8; + n cos o,
and VI.49

2m cos 8;

" mcos 8] + n cos 6,
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To eliminate 6, from T and R we seek Snell's law in a certain
form: from equation VI.45 we write

nsin 8, = sin 8;
then
nZ(1 - cos?e,) = sin%e; ,
and finally
ncos 8, = = (n2 - sin2g;)1/2 . VI.50

Upon substitution of equation VI.50 into equations VI.49 we obtain

m cos 87 - ¥ n? - sin?g,

R =
m cos 87 + ¥ n% - sin4gg
and VI.5]
2 m cos 8
T =

mcos 87 + ¥ n? - sin?s,

where the positive sign of equation VI.50 was taken to insure that |[R| <1
(see next section)

Generally, in acoustics the grazing angle {¢} rather than the angle
measured from the normal (6) 1s used. In this case equations YI.51 become

~

_msin ¢ - / 0% - cos? ¢

msin ¢ + //nz ~ €052 ¢

and VI.52

T = 2m sin &

msin ¢ + ¥/ n2 - cos? ¢
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Intensity. The intensities of the incident, reflected, and transmitted
waves are

. p:  p;p¥

T ;C P16 ’
2 *

L PE P

and

12=
P,Cy  PyC,

respectively. The intensity ratios are

I p px
r r r
——=(-—-‘-——)=RR*=|R12
Ii py P}
and VI.h3
EE.: P14 (EE. Eé. =010 7|2
Ii P2Cy Py p? m m

Reflection Tloss and transmission loss are given by 10 Log [R|2 and
10 Log %-]le » respectively. Note that |R[ <1 1is required but that |T|
could be greater than one,

Analysis of reflection at a plane boundary. Due to the many interrelated

cases that must be considered, reflection at a boundary is quite complicated.
To understand the problem requires a detailed analysis of the various cases.
The following analysis is an attempt to be as orderly as possible in presenting
the cases. It would probably be worthwhile to refer to the diagrams presented
in this section as the section is studied. Reflection at four particular
incident angles will be discussed first, then reflection at other angles will
be discussed in relation to these.
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At normal incidence (¢ = 90°) the reflection coefficient is given by

- M=-n
Rn m n

If m>n (i.e., p,c, >> p,c;) then R, = 1 findicating total reflection
and zero phase shift. If m << n then Rn -1 indicating total reflection
but a phase shift of 180°. If m=n ({i.e., the acoustic resistances are

EH

the same even if the densities and velocities are not) then Rn = 0 indic¢ating
no reflected wave.

At grazing incidence (¢ = 0) the reflection coefficient is given by

so that reflection is total with a phase shift of 180° for any n and m .

We next define an angle called the "critical angle" by
COS ¢ =N, VI.54

which exists only if n <1 . For incidence at the critical angle the reflec-
tion coefficient is given by

RO=] N
that is, the reflection is total with no phase shift. Physically, the critical

angle is the angle of incidence in a Tow speed medium for which the transmitted
wave propagates paraliel to the boundary.

We now define an angle called the "angle of intromission" by
m sin o1 = Yn? - cos by

which reduces to

2 . 2
cos ¢ = m-_- B /2 i VI.55
me - 1
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For incidence at the angle of intromission there is no reflected wave, i.e.,

In order for an angle of intromission to exist it is necessary that either
m>n>1

or
m<n <1

For other angles we first consider n > 1 and find that R varies from
Rg = -1 at grazing to R = {m-n)/(m+n). If n>m also, R s negative
over all angles from grazing to normal. If n <m , then an angle of intro-
mission exists where R goes to zero in crossing from negative to positive.
The following diagram illustrates this in terms of the magnitude of R and
its phase (e) {for n> 1) :

]800 ,———j——

0° 91 90° 0° 61 90°

grazing normal grazing normal
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Now consider n <1 . R varies fromR_= -1 at grazing to
R = (m-n)/(m+n) at normal. A critical angle at which Ry, = 1 will
always exist in this case.

For angles greater than the critical angle {¢ > ¢3) R is real. If
n<m, R decreases uniformly from one to a positive Rn . If n>m an
angle of intromission, at which RI =0 , also exists (between $g and 90°)

and R then further decreases to a negative Rn‘

For angles less than critical (¢ < ¢5) R 1is complex and further analysis

is required. In this case ﬁg"j"zgggg is imaginary so we write it as

j Ycos2¢ - n2 and put this into equation VI.52 to get

m sin ¢ + j Ycos2¢ - n?
msin ¢ - j Ycos2¢ - n?

R =

VI.56

The negative sign of equation VI.50 is to insure that the wave in the second
medium decays to zero as z goes to infinity (see next section).

The refiection coefficient has the form

a+ jb _ a2 - b? + 2ab

R = Tl
a-J a2 + b2 a2 + b2

The magnitude of R 1is unity for all ¢ < ¢, because

i} _fatgb  a-jb /2
Rl = A = {21 2o i)
The reflection coefficient may be written in the form

R = [R[eje = gJc

where the phase is given by

tan e = =
2
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If we define tan 8 = b/a this reduces to

_2tan ¢

tan ¢ 7

ST AR tan 2§

where the later part of the equation is completed by a trigonetric relation.
Therefore, 26 = ¢ and

‘/2_2
Cos ¢ - 1 . V1.57

msin ¢

e b .
tan 73

At critical incidence e = 0° and at grazing e = 180° . For angles between
equation VI.57 gives a uniform curve,

The diagram below illustrates the above discussion of the reflection
coefficient for n <1 in terms of |R| and e :

180°

OO

0 o1 90°
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Solution in the lower medium for the case of total reflection at angles
below critical. The solution in the Tower medium is

cos ¢ sin ¢,

p, = C exp {jw(y & + z runie t)}

But for incident angles less than critical (¢ < ¢9) , sin ¢, is complex and
is given by

sin ¢, = + %—¢c052¢ - n?

(The posttive sign was chosen to insure that the wave in the second medium
dies away as z goes to infinity.) The solution is now

Cos ¢ 31
= A | B AP A S o e
p, = C axp { e,n Cos?¢ ~ n? + jw S (y 5 G t)}
or
Pp = Cexp {- £Lv/o0sZy - 1% + § & (y - c't)) VI.58

Note that the wave propagates along the boundary at the velocity c¢' = ¢;/cos ¢
and is attenuated in the Tower medium (where =z is positive) in accordance with

the real part of the exponent. These points are illustrated in the figure below:

L /////

L JL NI S IRl LI R T N

wave fronts of P;

ool
] gy RN SRR U NN SERGUNI [ wave fronts of p,

.C reiwm o ome] sy e m e . - - e ey | v »
qim.surfaces of constant attenuation

(%%-Vcosz¢ - n% = const.)
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These results suggest that a constant acoustical energy is set up in the
lower medium and that this energy is needed to produce the total reflection.
In the steady state this energy does not change in time and no power flows
cross the boundary into an ideal Tower medium. But if the Tower medium is
lossy, energy is dissipated in it and a continuous power flow across the-boundary
is needed to replace the lost energy, thus giving rise to a reflection that is
not quite total.

Reflections at the air-water interface. Let us consider the two cases
of reflections at the air-water boundary as illustrated below.

air p2Co air p1Cy
water p1€1 water p2Cy
Cy o 1
n = EE—= 4.3 n= —;—= 3
P2 1 2
m=T‘-‘—7—7‘— m=a—;=770
n>1, m<] n<l, m>1
Case A Case B
In Case A

-%5 sin ¢ - /4.32 - cos?s
e sin ¢ + v/4.3%2 - cos?y

70

~J

i

Over the full range of ¢, R s very nearly -1 . So the wave is totally
reflected and is 180° out of phase with the incident wave. This is as we would
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expect because an air boundary over water may be considered as a free boundary
that will not support pressure, i.e.,

PL =Py *P.=pp=0
or
Py = = Py

at z=0. So that R=-1. This is generally the boundary condition imposed
at the sea surface.

The transmission loss across the boundary may be determined by
= - noti2
TL 10 Log — |T|
For normal incidence this is

TLn

fl

- 10 Log %—[Tnlz = - 10 LOQ'T%_QEHYE

In our case

4

TLI’I = - 10 Log (w) = 29 db
In Case B
770 sin ¢ 'J/kﬁl§)2 - cos2y
R = .

. 1
770 sin ¢ +//(ET§J2 - €052
In this case a critical angle exists. It is given by
o]
cos%—n-—m

or

by = 77°
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Below 77° the magnitude of the reflection coefficient is unity, but there is a
non-zero phase shift. Above 77° the coefficient is still very nearly unity and
there is no phase change.

The transmission loss at normal incidence is

- 4nm -
TLn = - 10 Log [W] 29 db
Bottom reflections. The most common condition at the bottom boundary is
n<1 and m>1 . In this case a critical angle exists and, assuming a
lossless bottom, total reflection occurs for angles more grazing than the
critical angle. Actually bottoms are not lossless and total reflection does not

occur at and just below the critical angle.

For some soft mud bottoms n is greater than one, while m is still
greater than one. If the case m>n > 1 holds an angle of intromission,
for which transmission is total, exists. k

Interference between reflected and direct rays: Lloyd's mirror effect.

Consider the problem of interference between a reflected and direct ray. Let
the surface have a reflection coefficient R , which may be complex to account
for phase shifts,

R = |R]eIE . VI.59

Let p' be the pressure at a point P(x,z) due to the direct ray from an
object at 0 , and let p'' be the pressure at the point P due to the image
at 1.
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Then

where A s assumed to be real, and

- RA Jw(t + 1)

P ry

where wt is the phase shift due to the difference (r, - ry) 1in propagation
distance;

(ry - ry)
C

T =

The pressure at P is

PR 2 I S
p 4 plt = Ae (et

p(X,z,t)

Now

and

r‘2=/><2+(z+h)3

Let us approximate the radicais by

- 2
rlgx['i-i-.]z.._(.z___hl_.]
X2
and
2
X

which is good for x >> z, h . Then the difference is

2zh
r‘z"r']_:'—';(“““
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Now, except for the difference noted above, it is assumed that x is so large

that we may take

'y = o = X

We now write the pressure

A eJWt CX ]

p(X,Z,t) = X — [1 + Re

In terms of trigonometric functions we have

A eth .
p(x,z,t) = —~§-—-[1 + R cos a + jR sinal ,
where
_ 2wzh _ 4nzh
a =~ Y VI.60
The intensity at the point P 1is given by
- bp%
I(x,z) "
Then
A2 . .
I(x,z) = 5527'[1 + (R + R*) cos a + j(R - R*¥) sin a + RR* cos2a
+ RR¥* sin2a] ,
or
A2 . .
I(x,z) = [1+2|R| cos e cos a + 2 |R| sine sina + |R|2]

pcx2
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Finally this may be written

AZ

I(x,z) = oexZ

[1+2 |R| cos {(a - €) + |R|?2] . V1.6l

If the phase shifts upon reflection by 180° (situation for a water-to-air
interface), VI.61 reduces to

2
I{x,z) = 5%§5-[1 - 2 [R| cos a + |R|Z] ., VI.62

where a 1is given by equation VI.60., Plotted below* in arbitrary units versus
the dimensionless range ax/4zh 1is I{x,z)x?

- ¥ 0.1

\\
(
/

. /[

/

\
\

[

30

& 7 -
N

ANOMALY IN 0B RELATIVE TO ARBITRARY ZERO

"h.\
i \.. a® 0.8
/ \
[y
ML) B
40 I U \I \ ™
\\I{ 1O
\\
—
50
FOR CONVEMIENGE IN DISPLAY, THE INDIVIDUAL
CURVES HAVE BEEN DISPLACED VERTIGALLY BY
ARBITRARY AMOUNTS
60 1 1 ! | l I
[+ a2 03 05 Q7 1 2 3 5 T 1]

*After Physics of Sound in the Sea, Natl. Defense Res. Comm. Natl.
Res. Council Div. 6 Sum. Tech. Rept. 8, Chap. 4, fig. 10, 1946.
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If, in addition to the 180° phase shift, |[R| =1 (which is a good approxima-
tion for the water-to-air interface), then VI.62 reduces to

I(x,z) = 28 3
X,Z) = W (-f - COs a) . Vi.6

For large enough x we can expand the cosine term into a series and retain only
the first two terms, i.e.,

_ A%a? _ 16 w222h2A2 ]
0CXZ | peAZ (& - V.64

The inverse fourth power range dependent acoustic field described by this equation
is sometimes called a "dipoie field."

VI.3. The Theory of Shallow Water Acoustic Propagation

Basically, there are two methods of developing the theory of shallow water
acoustic propagation: the method of images and of normal modes. Actually, as we
shall do here, one can develop a solution for the shallow water problem in terms
of a sum of images then transform this series into a sum of normal modes (i.e.,
the normal mode solution).

According to this approach, one attempts to construct a solution to
V2¢ + k2¢ = (}

where ¢ s the velocity potential or the pressure and k = w/c , and a set of
boundary conditions by summing over an infinite set of images. If we may consider
the boundaries to be a perfectly free surface at the top and a perfectly rigid
surface at the bottom, the conditions are
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3% - =
e 0 at z=20
and
¢ =0 at z =nh

The problem is illustrated in the diagram below:

z
z=h 4 4=0
e (x,z)
T (O:ZO)
z=20
2 X
9¢ .
9z 0

The source is at (0,zg) and the point of interest is (x,z} .

The solution is formed by the following sum over the images

- m
6=t0 ) R E VI.65
m=0

r
m

where L is the distance to the mth image and Rm js the mth order reflection
coefficient given by

]|
R = I R, , VI.66

where Ri is the reflection coefficient for a single reflection. In our case
Ri is plus or minus one depending upon whether the reflection occurred at the
bottom or the top, respectively.
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By making an integral expansion of exp{jkrm}/rm* the series image solution
may be transformed into a normal mode solution (a sum over normal modes instead
of over images). The solution is given by**

]

21jdg

o{x,z) = P :E: cosh b,zy cosh bzzHél) (aﬁx) VI.67
=0
where
. 1
J(,Q, + é')'lr
b = &
2 h ?
52 = fbi 4 k2

and Hél)(gzx) is the Hankel function of the first kind. A plot of this function

is not markedly different from the diagram on page 90 {with z being the vertical
axis).

VI.4. Spreading and Attenuation

Spreading. We have already briefly discussed spherical and cylindrical
spreading. In general, we may write the spreading Taw as follows:

TL n {10 Log r) VI. 68

spread -

where r s in yards and n depends on the type of spreading, i.e.,

no spreading

cylindrical spreading

spherical spreading

spherical spreading with Tinear time stretching

"dipole" type spreading associated with the Lloyd's mirror
effect.

=S > =S TS S
It
W Y - DD

*Brekhovskikh, L. M., "Waves in Layered Media," p. 332. Academic Press,
Inc., New York, 1960.

**Adapted from Brekhovskikh, ibid., p. 338.
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The case of no spreading is of no significance in practical acoustics.
Cylindrical spreading may apply in the case of shallow water, if the boundaries
are not too lossy, or in the case of surface channel or deep channel propagation.

Spherical spreading generally is good at an intermediate range far enough
from the source to assure far field but near enough so that we may assume free
field propagation (i.e., closer than the nearest boundary or gross medium
change}.

Time spreading in a free field results in n = 3 but is generally a hypo-
thetical case. But one can imagine a situation where, due to multipath propaga-
tion, the energy of a pulse becomes spread out over time as well as space.

This is generally what one attempts to account for when energy flux density is
used rather than intensity.

In general, the spreading Taw for sound propagation in the sea is not
simple, not only because of the reflection at the boundaries, but also because
of the refraction that takes place due to sound speed gradients.

Attenuation. Attenuation of sound is divided into two classes, scattering
and absorption. Scattering results from the reflection, and the resonant
absorption and re-radiation diffraction, of sound by macroscopic and micro-
scopic inhomogeneities in the medium. Absorption is due to the following
phenomena:

1. Thermal conductivity

2. Viscosity

3. Structural and chemical relaxations
4, Resonant absorption.

Scattering and absorption are described by the same mathematical formula
and will in general be called attenuation. The loss due to spreading follows
a different formula and is not included in attenuation.

The fractional infinitesimal change in intensity (dI/I) 1is proportional
to the infinitesimal distance traveled (dr) , i.e.,

%l-= - 28 dr

where & is a positive constant called the "{pressure) attenuation coefficient"
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in nepers/meter and the minus sign indicates that the change is a loss.
Integrating this equation between r and ry results in

kn I -LnlIp=-28 {r - rg)

or

25 (r - ry)

I=1I4e" VI.69
It is more common to write equation VI.69 as
s}
- 35 (r - rg)
1=1,10 0 VI.70

where r is measured in kyd and o 1is the (intensity) attenuation coefficient
in db/kyd .

A relation between the two attenuation coefficients may be obtained by
equating the exponentials of VI.69 and VI.70, i.e.,

"%‘O“(\”-T{]) -25(]""1"0)
10 =e s

where r on the left is in kyd and on the right in meters. This reduces to

_ db 3 (Mmeters

o = {20 Log e (neper)}{1.1 x 10 (‘Eya‘—)} 8
db

- 3 an

a = 9.6 x 10° 8§ (kyd VI.71
The transmission loss due to attenuation is given by
- [ .

TLAtt = - 10 LOQ E“ o (Y‘ - 1"{]) . Vi.72

ro 1is taken to be one yard (0.007 kyd) and I, 1is the source intensity,
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Generally ro may be neglected as compared to r , so that the transmission
loss due to attenuation may be written

TLAtt =0 r . VI.73

The total transmission loss may be written
TL=ar +10nLogr + 30n VI.74

where r 1is in kyd and the term 30 n accounts for the conversion from
yards to kyd , and n 1is determined by the type of spreading.

PROBLEMS

1. Using the integral equation (equation VI.28) in unbounded space containing
the point source

-

p (F') =as (*' - ro)

and the free space Green's function

k[P - P
G (?s?!) = E‘:T“‘TIT“”_ s
F - r

find an expression for the pressure field p(¥)

2. Using the integral equation find the pressure field in the half-space z > 0
if there is a source v (¥') =a s (v' - ?0) at the point ?0 = (0,0,24)

0 . Hint: construct a
0 on S.

and an infinite plane S at z =0 on which p

"

Green's function from point sources such that G
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VII. SOUND PROPAGATION IN THE SEA

Actual sound propagation in the sea is complicated by many factors:
physical and chemical properties of sea water cause attenuation and refraction;
rough and poorly defined surfaces complicate reflection; and ambient noise and
reverberation present problems in detection. In this chapter we shall consider
refraction due to sound speed gradients, channeling due to refraction and
reflection, and attenuation due to various causes. Problems of ambient noise
and reverberation will be considered in later chapters.

VII.1T. Sound Speed Profiles in the Sea

The speed of sound in water is approximately 1500 meters/sec, but jts
precise value is strongly dependent upon temperature, pressure, and to a lesser
extent, upon salinity. Generally, it increases as each of these quantities
increases.,

What is perhaps the most accurate empirical formula was provided by Wilson.*
This formula is
c=1,449.14 +V +V

+Vp VIL.A

T S sTp 2

where VT . VP » and VS are fourth, fourth, and second order polynomials

in the temperature, pressure, and salinity, respectively; and VSTP is a
polynomial involving cross products of S , T , and P . But this formula is
probably too complicated for general use. One can truncate the formula into
as many terms as he desires, but this produces less accurate results than to
use a polynomial obtained from a least squares fit with the desired number of
terms.

Using equation VII.T and the most accurately determined temperature, salinity,
and pressure (i.e., as obtained from hydrocast data), the speed of sound can be
calculated with an accuracy of about +0.3 m/sec. Generally, the speed of sound

*Wilson, W. D., J. Acoust. Soc. Am. 23, 1357 (1960).
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is determined in the upper few hundred meters using typical values for
- salinity and bathythermograph (BT) data for temperature. These results are
less accurate but the data are much easier to obtain.

A velocity of sound measuring device called the "sing-around velocimeter"
is coming into quite common use. Presently, it provides results with the
same accuracy as the hydrocast data but is easier to obtain and provides
continuous (or quasi-continuous)} results with depth.

The instrument operates on the simple principle of timing the travel of
an acoustic pulse between two points, but the method of timing provides the
"sing-around” aspect. Each time an acoustic pulse is received by the receiver,
electronic circuits trigger another acoustic pulse. The frequency or period
of the generated pulses is measured and related to the travel time. Future
generations of these devices are expected to improve the accuracy by an order
of magnitude.

Typical vertical variations in temperature and salinity are 25°C and
2 ppt, respectively. These variations produce a sound speed variation of
about 80 and 3 m/sec, respectively. The sound speed variation due to pressure
alone between the surface and 3,000 meters is about 50 m/sec. Thus, we see
that temperature and pressure are the important variables in determining the
vertical profile of the sound speed. Pressure varies linearly with depth to
a very close approximation; therefore, temperature is the primary variable
that must be measured at sea in order to determine the sound speed. For this
purpose BT data is of special interest.

The graphs below indicate typical temperature profiles and their general
latitude dependence:

T(°C } e
0 10 20
z(meters) } } }
100+ 3 2 1
1. Equatorial
2. Middle latitude 500
3. High Tatitude Mixed Tayer
Thermocline
10004- ~ _ Near isothermal deep water




The sound speed profiles are determined primarily by the temperature
and pressure profiles. The graphs below show sound speed profiles for
the typical pressure and temperature profiles at the right:

c{m/sec}
]4?0 1500 1550
|

Y]

Mid-Latitude

/

High Latitude \\\

Since gradients of sound speed cause refraction, sound speed profiles
are extremely important in practical acoustic propagation problems. It is
convenient to remember that acoustic rays are bent (refracted) toward regions
of Tower speed. For this reason the sound speed minima are very important.
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The diagram below shows how a typical sound speed profile determines
the path of a ray:

uuuuu
.....
-----

-----

adow zone” /

In addition to showing the refracted paths of the rays, the figure above shows
regions called "shadow zones" where direct rays cannot enter. Shadow zones
begin at sound speed maxima whether the maxima occurs in the column or at a

Q-_N

boundary.

VII.2, Sound Channeling

Mixed-layer sound channel. Any horizontal Tayer of the ocean is poten-
tially a sound channel; i.e., a channel or duct, which, due to refraction,
produces a spreading less than spherical. O0ften, an isothermal surface
layer forms such a sound channel. Due to the pressure effect the sound
speed in this layer increases from the surface to the top of the thermocline.

The diagram below shows acoustic ray paths for such a channel:

c

_— S e —

Yy N




The existence of the mixed layer sound channel is important to the operation
of hull-mounted surface ship sonars.

Due to scattering at the surface and "Teakage" out the bottom, spreading
in this sound channel is, generally, not much better than spherita]. A
"leakage coefficient" (aL) that represents an energy loss in addition to
cylindrical type spreading may be defined, This coefficient is a function of
surface roughness, mixed layer thickness, sound speed gradient below the layer,
and frequency (Tow frequency leakage is greater than high frequency).

A simple model for transmission loss in a channel has been given by
TL = 10 Log r + 10 Log re ¥ (o + aL) r x 103 , ViI,2
where range is in yards and i~ is a transition range to which the spreading

is spherical and for r >> e the spreading is cylindrical. r
arbitrary but has a value of a few kyd.

" is somewhat

A semi-quantitative plot of transmission gain over spherical transmission
loss is plotted below for a moderate range of about 15 kyd.

Level in db

-10 0 10
1 } Surface

;:5.--_ Layer depth

1 16 kHz
8 kHz

Free field value
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At very low frequency, sound ceases to be trapped in the Tayer simply
because the wavelength becomes too large to be contained in the Tayer. The

maximum wavelength (A___) that can be trapped is given by

max

Apay = 4:7 ¥ 1073 W32, VII.3
where H 1is the mixed layer depth and both Anax and H are in feet. For
example, for a mixed layer depth of 100 feet, A max is 4.7 feet, which
corresponds to a frequency of 1.1 kHz.

The deep sound channel. The sound speed minimum that occurs at great
depth as seen in previous diagrams is the axis of another sound channel
called the "deep sound channel® or "SOFAR" (SOund Fixing And Ranging).

This minimum is produced by the combined effects of decreasing temperature
and increasing pressure and occurs at depths of 800 to 1200 meters in Tow and
mid-latitudes but approaches the surface in high latitudes.

This sound channel was originally investigated by Ewing and Worzel®
in 1948. The graph below was taken from that reference. It indicates ray
paths for propagation in the deep sound channel for a source on the axis.
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*Ewing, M., and J. L. Worzel, "Long-range sound transmission,"
Geol. Soc. Am. Mem. 27, 1948.
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Transmission in the deep sound channel is exceptionally good because the
rays are channeled primarily by refraction rather than reflection (associated
with reflections are generally quite severe energy losses). Sound transmission
in the deep sound channel is measured in thousands of miles.

Due to multipath transmission, this long-range propagation is characterized
by severe distortions in the signal. A pulse of a few tenths of miliseconds,
such as that of an explosion, becomes stretched out at the rate of about 9.4
sec per 1000 miles of travel. The received signal is characterized by a sTow
build-up of intensity followed by a sharp drop, such as is indicated below:

VMMM T

The initial rise in intensity is produced by the arrival of rays making wide
excursions from the sound speed minimum. These rays travel the fastest
because, although their paths are sTightly longer, they spend most of their
time in a higher velocity region. But these rays carry the least energy.
The energy at the end of the pulse is due to the bundie of rays travelling
near the acoustic axis. Once these rays pass the signal ceases.

An important feature related to the propagation of sound in this channel
is the existence of regions containing a number of caustics. These regions
are called "convergence zones" and intensity of sound in these regions is
generally 10 to 20 db higher than the free field value. The diagram below
illustrates the gharacter of convergence zones for a shallow source and
receiver: ;
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The increase in intensities associated with the peak in the transmission
loss diagrams are called "convergence gains.” These convergence zones occur
in approximately 35 mile intervals and are about 3 miles wide.

Shallow water transmission. Shallow water sound propagation is strongly
dependent upon the depth and sound speed profile. If the profile has a negative
gradient from the top to the bottom, propagation is particularly dependent
upon the bottom configuration and bottom and sub-bottom properties. This is
because rays are refracted toward the bottom. If the profile has a positive
gradient, surface roughness becomes the important factor. “

Propagation in shallow water may be described by either ray theory or
normal mode theory depending upon the ratio of wavelength (A) to depth
(d) . If
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ray theory is generally more appropriate. For example, the lower frequency
Timit for the applicability of ray theory in water of 15 meters depth is
10 ¢ _ 15,000 _ 15,000 _

= o = = 1000 Hz

Normal mode solutions are better suited if

aj>
v
M|~

For example, in the above case the upper frequency Timit for a good normal mode
analysis is
_2c¢ _ 3,000 _
fu—“a""—m-is = 200 Hz
Normal mode solutions apply for higher frequencies but are less practical
because of the number of terms needed in the series solution (see equation
VI.67).

Let us consider the ray solution. Over the range of validity for the
ray solution, the reflection coefficient is given by equation VI.52. It is
generally assumed that the Tower boundary condition is characterized by a
sound speed and medium density increase on going from the water into the
sediments. In this case a critical angle exists so that the reflection coeffi-
cient is unity for angles from grazing up to the critical angle and the phase
shift decreases in a regular manner from 180° at grazing to 0° at the critical
angle. From the critical angle up to normal incidence, the reflectivity
decreases from one to a finite value, while the phase shift remains zero.
The condition at the surface is described by the free surface boundary condition
for which reflection is total and the phase shift is 180° at all angles.

The basic form of the propagation depends upon the sound speed structure,
while the details of the propagation depend upon the specific environmental
properties as discussed before. Let us consider three specific profiles: the
isovelocity profile, the negative gradient profile, and the positive gradient
profile. Combinations are also found but the analysis of the propagation
provides nothing essentially different from what was discussed earlier and
what will be discussed now.
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Let us first consider the isovelocity profile and, for the moment, assume
that the source and receiver are at the surface. Then the only effect is
straight line propagation with reflections from the surface and the bottom.

Let Bn represent the nth order bottom reflected ray, i.e., the ray that
has been reflected from the bottom n times (see figure below).

B N N

You will note that the nth order bottom reflected ray has been reflected
n -1 times from the surface. The direct ray (D) is the zeroth order bottom
reflected ray.

The travel time for each ray is given below:

[x2 + (0z)2]1/2 _To
c T c

-t
|
o

[x2 + (2z)27/2 _ "1

tgy = c e

- [x2 + (4z2)2]3/2 _ ii
B2 ~ C -
b= [x2 + (2nz)2]1/2 - "n

°|

Bn c
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The time sequence of the arrivals of an acoustic pulse is shown below:

Intensity

= Time

Note that there is some indication of a decreasing intensity. Since for each
arrival we may assume spherical spreading, intensity will decrease as the

inverse square of the propagation distance (rn) . But, in addition to spreading,
there will be attenuation and reflection losses. Note that the higher order
arrivals will not only have travelled further but will have struck the surfaces
more often and that each reflection will have removed more energy than a lower
order reflection due to the higher grazing angle.

A plot of the arrival time versus the range x 1is shown below:

t —/
B3
67 B2
c
iz B1
C
X

—3

These curves are hyperbolas and the t intercepts are the round trip times
for vertically reflecting rays.

If we still consider an isovelocity profile, but take the source and
receiver at some depth below the surface, we find additional rays present.
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There will be four rays for each order of bottom reflected rays: one will be
the same as before [Bn, S{n - 1)]; two distinct rays will make n reflections
at the bottom and n reflections at the surface, one strikes the surface first
and one strikes the bottom first 2[Bn, Sn]: and one will reflect from the
surface n + 1 times [Bn, S{(n + 1)]. For the zeroth order only the two rays
[BO, SO] (the direct D) and [BO, S1] (the surface reflected S) exist.

These rays for the zeroth and first order bottom reflected rays are shown
pelow:

o/N;[Bo,su 3 4 1:B1, S0]
\° \ / 2:[8], S-i]
D:[BO, SO] / e  3:[B1, ST1]

|
\// \/2 4:[B1, 2]

The time sequence below shows their arrivals:

Intensity

I

For the case of a negative sound speed gradient, the rays will be
refracted toward the bottom as shown below:

1l "

n=2 Time

) ' t
critical ray limiting ray
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In this case no single ray type can propagate indefinitely because each type

of ray has a limiting ray beyond which that ray type cannot be found. This
establishes the long-range limit for a given ray type. The short-range 1imit
for a given type may be assumed to coincide with the propagation of the

critical ray of that ray type. We establish this as the short-range 1imit since
rays incident upon the bottom from angles more normal than the critical ray

will not be totally reflected.
Using these rays to delimit propagation zones we obtain the following

diagram:

P PR —

[ <A\~

Here the interval labeled Bl and B2 are the zones for propagation of those
type rays. The propagation zones may be illustrated on a transmission diagram:

B3

B2

Order

B1

Range

In water with parallel boundaries, the width of the range interval for propaga-
tion of a Bn ray type is n times the range interval of BT .
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As shown below, rays are refracted toward the surface in the case of a
positive sound speed gradient:

\ ' ~"shadow zone

In general, this condition provides the best propagation. The reason for this
is that fewer bottom bounces (bottom reflections are generally not as good
as surface reflections) are required. Also since we generally consider the
source and receiver to be at the surface, the propagation of a direct ray in
a positive gradient medium is about twice that in a similar negative gradient
medium. For example, consider the figure below:

neg. grad.

profile pos. grad.

profile

For a source and receiver at the bottom the opposite is true. For one at the
surface and the other at the bottom considerations such as the picture above

is not important.

In the case of the positive gradient there is a set of rays called "RSR"
(refracted-surface-reflected) rays that propagate particulariy well. These rays
are the rays that are returned to the surface by refraction rather than
bottom reflection and therefore do not experience the poor reflective properties
of the bottom. The quality of propagation of RSR rays depends upon sea state.
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VII.3. Attenuation of Sound in the Sea

The attenuation of sound in the sea is characterized by any one or a pair
of four attenuation coefficients, o) , ap , w3 , Or oy . The frequency ranges
of applicability of each of these coefficients are given in the table below:

coef. freq. range att. range (db/kyd) process

a1 500 kHz - up 100 - up viscosity

oy 10 kHz - 500 kHz 1 - 100 MgS0, relaxation

03 200 Hz - 10 kHz 0.1 -1 scattering by inhomog.

oy 16 Hz - 200 Hz 0.001 - 0.01 possibly a boundary effect

In the center regions of these ranges, a single coefficient is sufficient;
near the 1imits a pair of coefficients should be summed (for example,
near 500 kHz o = ay + op).

Useful empirical formulas for these coefficients {in db/kyd) as a function
of frequency (kHz) is given below:

e a; = 2.68 x 1072 sz/fT . VII.4

where D is a function of depth and fT is a function of temperature. These
functions are

D=1-1.93 x 107%d ,

where d is the depth in feet, and

¢ = 210 x 107-[1520/(T + 273)]

T

where T 1is the temperature in °C.
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2
SDfo

2 2
f22 + f

o ay = 1.86 x 10-2 VIL.5

where D and fT are given above and S is salinity in parts per thousand.

2

° g = b T VII.6
1+ f2

0 a = 0.33 2 . VII.7

~ A plot of the attenuation coefficient over the frequency range 20 Hz
to 5,000 kHz is given below:
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VIII. REVERBERATION

In addition to the echo return from the target and to ambient noise, an
echo-ranging sonar will receive part of its own transmitted energy returned
in undesired echos. This undesired return of energy is known as "reverberation."
It is the net effect of scattering from various inhomogeneities in the volume
of the medium and at the surfaces bounding the medium. Reverberation is propor-
tional to the transmitted power and, therefore, once the return becomes rever-
beration limited, instead of noise limited, no further increase in power or
reduction in bandwidth will improve the quality of the return.

Considerable theoretical and analytical formulation has been developed
for reverberation phenomena, but it is all rather useless because of complexity
and irregularity of the medium. Instead these formulations have provided
some rules of thumb for design criteria and order of magnitude prediction
models.

The theory is built around two forms of reverberation:

1. volume reverberation
2. surface reverberation.

Surface reverberation is further divided into:

1. sea surface reverberation
2. bottom reverberation.

These Tatter two have the same mathematical formulation but differ in physical
form.

VIII.1. The Theory of Volume Reverberation

In the case of volume reverberation the scattering of sound by inhomog-
eneities in water may range between two extremes:

1. Rayleigh scattering, on the one hand, by particles much smaller
than a wavelength. This scattering is independent of the shape
of the scatters and depends upon the square of the frequency.
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2. Regular geometric reflection, on the other hand, by objects
Targer than the wavelength of the sound. This scattering depends
upon the acoustical properties of the individual scatter and is
independent of frequency.

The intermediate case of object and wavelength near the same size is more
complicated. The function of frequency generally contains resonances that
depend upon the acoustical properties of the scatters.

Some of these inhomogeneities are:

marine organisms
entrapped air bubbles
thermal microstructure. .

When the first two do occur, the reverberation they produce is much stronger
than that of the last. Reverberation caused by marine organisms is fairly
universal and represents the major source of volume reverberation.

To describe volume reverberation in a quantitative manner, we will define
several quantities. First, we define "volume scattering coefficient" (mv)
to be the power per unit intensity and scattering volume scattered from an

incident plane wave of intensity (I) by a small volume (V) , i.e.,

P
- scat (L-1) VIII.]

where PScat is the total power scattered from the beam. Note that mVV
has the dimensions of area and may be interpreted as the effective cross
sectional area of the scattering volume since it intercepts the power I(mVV) .

For this reason m,, has aiso been called the "backscatter cross section.”

We next define the "volume scattering strength" (sv) to be the intensity
per unit incident intensity and scattering volume scattered from an incident
plane wave by a small volume and measured at a unit reference distance in the
direction {06,) , i.e.,

I
- _scat (6,9) -3
s, (8:8) = 57 (L-3) VIII.2



where Iscat(e’¢) is the intensity scattered from the beam into the direction
(6,6) and measured at the reference distance from the acoustic center of the
scatterer,

"Volume backscattering strength” (séb)) is the scattering strength for
the backscatter direction.

Since the power may be obtained by integrating the intensify over the
surface of a sphere, i.e.,

= 2
Pscat flscat rd da

where r,; 1is the reference distance and is unity,

m, =fsv da . VIII.3

It is generally assumed that

for all angles (i.e., the scattering is isotropic).*

In this case

- (b) _
m,, 41rsv = 4nsv . ¥III.4

The "decibel volume scattering strength" is given by

SV = 10 Log Sy . VIII.5

By the assumption of isotropy above,

My
SV = 10 Log T . VIII.6

*
Probably valid only in the case of resonant scattering.
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The total scattering strength of an insonified volume (V) of ocean is

I
scat _
—*—’I"-'-"'— fSV dy

v

Usually Sy is assumed constant in the volume so that the integral reduces
to sVV .

The decibel value of the total scattering strength is equivalent to the
target strength so that

I
TS = 10 Log Sfat =S, +10Log V . VITI.7

The "reverberation level" for volume reverberation (RLV) is the level of
a plane wave, incident along the acoustic axis, that produces the same hydro-
phone response as the reverberation. The reverberation level, for the case of
the projector and hydrophone being the same transducer, is

RL, = SL - 2L + s&b) +10 Log V

where SL is the source level, 2TL is the two-way transmission loss,

Séb) is the back scattering strength and V 1is the effective insonified volume.
The effective volume is given by
ik
V = r? (g—T-)j b(e,e) b' (8,0) dn , VIII.9

0

where <+t 1is the pulse length and b and b' are the transmit and receive
beam patterns, respectively. This is easily understood by referring to the
figure below:

transducer
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Let us define an equivalent solid angle beamwidth ¥ such that

dr

w=jbw@)w®¢)m

0

VIII.10

Assuming spherical spreading, equation VIII.8 may be written

2
RL, = SL - 40 Log r + s\(,b) +10 Log (5E%) + 10 Log ¥

Expressions for 10 Log V¥
are given in the table below:*

(as well as

10 Log g

VIII.T]

to be defined shortly)

Array

10 Log ¥
db re 1 steradian

10 Log )
db re T radian

Cinculan plane array, in an
infinite baffle of radius
a > 2i

Rectangubar array in an
infinite baffle, side a
horizontal, b vertical,
with a,b >> A

Honizontal Line of length
1> 2

Nondirectional (point)
transducer

20 Log (2;—&) +7.7

2
10 Log %Las + 7.4

10 Log 5oy + 9.2

10 Log 4r = 11.0

10 Log —2%5- + 6.9

10 Log ‘2‘"??5 + 9.2

10 Log + 9.2

2nT

10 Log 27 = 8.0

x
After P. A. Barakos, "Underwater Reverberation as a Factor in ASW
Acoustics,” U. S. Navy Underwater Sound Lab. Rept. 620, Sept., 1964.
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VIII.2. The Theory of Surface Reverberation

By surface reverberation we mean the reverberation produced by the
scattering of acoustical energy from surfaces rather than in the volume of the
medium. Naturally, the two surfaces that we are concerned with in underwater
acoustics are the sea surface and the sea floor.

We will define surface reverberation quantities in a manner similar to
that which was done in volume reverberation. The quantities are:

e "Surface scattering coefficient" mg == the power per unit intensity

and scattering surface area scattered from an incident plane wave of
intensity (I) by a small surface (A) , i.e.,
Pscat

me = g (dimensjonless) . VIII.12

e "Surface scattering strength" Sg == the intensity per unit incident
intensity and scattering surface area scattered from an incident plane
wave by a small area and measured at a unit reference distance in the
direction {(8,4) , i.e.,

(8,9)
s, = (0,4) = _scat> "7’ (L-2) VIII.13

@ "Decibel surface scattering strength” SS -~ defined by

SS = 10 Log S¢ . VIII.14

Integrating the scattered intensity over the surface of a unit sphere gives
the scattered power as before. The equation can then be reduced to

ms—

2n
S¢ de . VIII.15
h;
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Making the assumption

SS (8.9) = Séb)

for a1l (6,¢) 1in the upper half-space,* we obtain
Lo (b) . N
me = 2m S¢ | = 21rsS ) VIII.16
The reverberation Tevel is
RL, = SL - 2TL + séb) + 10 Log A VIII.17

where A is the effective reverberation area. The expression for the effective
reverberation area is considerably more difficult to interpret than for the
reverberation volume (equation VIII.9). The reason for this is that geometry

of the scattering surface in relation to the position and orientation of the
transducer must be considered.

Let the angles o and B represent the angles to a point (P) on the
surface relative to the position of the transducer (T) .

B is the angle
around the line TS

From the diagram we find that the elemental area (dA) 1is given by

dA = dx{xdg) = xdxds

*
It is most unlikely that this assumption is ever valid in any strict sense.
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We also see that

]

xdx = rdr = r %3

let p=¢ , i.e., chose B so that it coincides with the azimuthal angle
about the transducer, then

dala) = r{a) %’i‘»dq,

Define the effective elemental area dA' to be the elemental area weighted
by the composite beam pattern:

dA'(a,0,0) = rla) 5= b(6,0) b'(8,¢) do

where & now brings in the vertical orientation of the transducer.

acoustic axis

The effective insonified area at the point P is

i}

2
Ao,8) = r{a) §3¥ .!' b(e,s) b'(e,4) do . VIII.18
0

Note that, unlike the effective volume given in VIII.9, the effective area
has angular dependences. It should be remembered that the range r (or the
angle o) s not connected geometrically to the angle e until the orienta-
tion of the transducer is specified. See the details in the figure following:
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= 0
Let
2T '
5(8) = j b(6,6) b'(8,6) db VIII.19
0
then
Ala,8) = r(a) ‘Z:—T@-'(e) ) VIII.20
This is then put into VIII.17 to obtain
RL, = SL - 40 Log r + séb) + 10 Log (-’lgl) + 10 Log #(8) VIII.21
It may be shown that &(6) can be written
o(o) = (A8 = £, 0) b'(6 - &, 0)y ©VIIL.22

cos &

where & 1s the elevation angle of the transducer axis (see above figure) and
8 1is less than 30°, and ¢&; 1is given by
2w
% = #(0) j 5(0,4) b*(0,6) do

0
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and is tabulated at the end of the last section. We may assume that outside
30° the beam patterns are down so low that reverberation may be neglected. The
correction factor (F) for ¢ =0 is

]
F = 10 Log 2(820) b'{0.0)

For a circular or rectangular piston it is given approximately by the table
below.

6 (degrees) F (db)
0 0
2 -1
4 - 2
6 - 6
8 - 12

The reverberation level (equation VIII.21) becomes
RLS = SL - 40 Log r + SS + 10 Log (%I-r) + 10 Log ¢ + F VIIT.23

if the acoustic axis of the transducer is horizontal.

Lambert’'s Law. A particular type angular scattering distribution which
has found some use in optics and acoustics satisfies a certain rule known as
Lambert's Law. Accordingly, the scattering distribution obeys

I =pn Il Asinagsing VIII.24

scat
where IScat is the scattered intensity as a function of the grazing incident
angle ({a) and scattered angle {(B) , I s the incident intensity, A 1s the
reverberation area, and u 1is a proportionality constant (which is 1/x if

no energy is lost into the medjum below).
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This distribution is plotted below.

The scattering strength as a function of o« and g 1is

I
S, (o,8) = 10 Log M?E%E-= 10 Log u + 10 Log (sin o sin 8)

The decibel back scattering strength is

Séb) =10 Log u + 10 Log (sin2a) . YIII.25
At normal incidence

Sgb) = 10 Log u ,
and for total reflection

séb) =-10Logm=-5db

This is a very special form of scattering but very rough surfaces seem
to follow it fairly well.



154

VIII.3. Reverberation as Observed at Sea

Volume reverberation. The major source of volume reverberation in sea is
the deep scattering layer(s), DSL as it is called. The scatterers responsible
for the reverberation are undoubtedly biological, but the specific creatures
making up the DSL have not been definitely identified.

Many studies using towed nets, photography, and manned submersibles as
well as echo-ranging have provided only one definite result; the number of
creatures per cubic meter responsible for even a strong DSL is quite small
(~ 0.05 m3). The studies suggest that the organisms most likely involved
are myctophids (lantern fish), siphonophores, euphausids (shrimp 1ike creatures),
squid, and copepods.

We may summarize the acoustic characteristics of the DSL as follows:
e The DSL is fairly universal.

e At any one time and Tocation there may be several layers at
different depths.

e Some layers, but not all, migrate upward at sunset and downward
at sunrise.

e Their depths are more or less constant during the daytime, and
range from a few tens of fathoms to as many as a thousand.

e A variable and unpredictable frequency structure is found between
1 and 20 kHz generally indicating resonance phenomena.

® Above 20 kHz there is a general increase in scattering strength
of 3 to 5 db/octave.

e Some layering has been observed in shallow water.

Sea-surface reverberation. Sea-surface reverberation is one of the more
important effects on sonar operation because of the shallow depth of the trans-

ducer in the surface ship. This reverberation is extremely important in surface
channel propagation.

It is known that the sea-surface back scattering strength varies with
incident angle, acoustic frequency, and roughness of the surface. The latter is
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often related to the wind-speed in a somewhat semi-quantitative way.

In addition to the actual reflection and scattering that take place at
the air-sea interface, a volume scattering due to near surface bubbles
occurs within a foot of the surface. Since this is so close to the surface and
can not be distinguished from actual surface scattering except by a detailed
interpretation of the data, it is considered as part of the surface reverberation.

Several empirical and semi-theoretical expressions have been advanced
to provide the functional dependence of back scattering strength upon incident
angle, acoustic frequency, and wind speed. None succeed completely.

One such expression was given by Eckart* and reduced to a practical form
by Chapman and Scott.** It is

séb) = -10Log 8 a2 +2.17 a2 tan? o

where 6 1is the grazing angle and o? 1is the mean-square slope of the surface
waves. a2 s given by Cox and Munk*** to be

e = 0.003 + 5,12 x 1073 ¥

where W 1is the wind speed in meters per second. Good agreement was found for
angles greater than 60° and no frequency dependence was observed as Eckart's
theory indicates for large grazing angles. But this formula is not valid very
near normal incidence.

[t would seem intuitively obvious that for low grazing the backscatter

#C. E. Eckart, "Scattering of Sound from the Sea Surface," J. Acoust.
Soc. Amer., 25, 566 (1953).

**R. P. Chapman and H. D. Scott, "Surface Backscattering Strengths
Measured over an Extended Range of Frequencies and Grazing Angles,” J. Acoust.
Soc. Amer., 36, 1735 (1964).

**%C, Cox and W. Munk: "Measurements of Roughness of the Sea Surface from
Photographs of the Sun's Glitter," J. Opt. Soc. Amer., 44, 838 (1954).
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should decrease to extremely low values independent of the sea state, but
experimentally it does not. It is strongly dependent upon sea-state and
frequency. It is to account for this behavior that the very near surface
scattering layer of bubbles was conjectured.

A sketch of the grazing angle dependences for a low sea state (L) and
a high sea state (H) are shown below:

| | !
30 60 a0
Grazing angle

Bottom reverberation. In shallow water, scattering from the bottom is
generally the strongest contributor to the observed reverberation. Typical
order of magnitude values for volume, sea surface, and bottom reverberation
in shallow water are -80 db, -40 db, and -25 db, respectively.

Bottom reverberation depends upon the type and coarseness of the bottom
and its contours. But it is generally believed that the contours produce the
biggest effect. This is confirmed by an absence of a strong frequency
dependence for frequencies below 10 kHz. For scattering at frequencies above
10 kHz, the bottom properties may become more significant. Finer bottoms such
as those composed of sand, silt, and mud show an increase in scattering strength
of 3 db per octave increase in frequency, while rock and sand mixed with rock
and shell bottoms seem to show no freguency dependence up to at least 60 kHz.
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IX. NOISE

Generally, noise observed in the sea is divided into three categories:
that generated by the measuring process itself, e.g., cable strumming,
platform noise, etc., this noise is called "self-noise"; anomalous localized
noise due to individual fish, ships, etc.; and ambient noise, the general
background noise that is left when the specific sources indicated above are
removed.

The sonar parameter "noise level™ (NL) 1is the intensity level as
measured by a hydrophone operating in a specific bandwidth. Noise level is
expressed in decibels with'a reference of a plane wave of 1 dyne/cm? rms
pressure, " The level cited in literature is generally a spectrum level (per
unit bandwidth) in order that the effect of the bandwidth may be eliminated.
The noise level is then given by

NL = NL1 Hz + 10 Log W, ' IX.1

where W 1is the bandwidth,

There are several major sources of ambient noise and each dominates
portions of the frequency spectrum. Spectra have been measured over the range
from a few Hz to a few hundred kHz. In this range the major sources of ambient
noise are:

radiated sound associated with waves, surf, rain, etc.;

pressure changes due to oceanic turbulence;

distant shipping and industrial activity;

marine animals as a group rather than Tocalized individuals; and
thermal molecular activity.

Other phenomena that generate acoustic noise in the sea are the hydrostatic
pressure changes due to tides and waves and seismic activity, but generally this
noise is below one Hz and not significant in underwater acoustic applications.
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Average deep-water ambient noise spectra can be divided into four distinct
regions as shown in the graph that follows:*
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The table below indicates the frequency ranges and the dominant process.

Frequency (Hz)}

Process

1

10

200
50,000

10

200
50,000
100,000

Oceanic turbulence

Shipping

Wind, waves, foam, and spray
Molecular activity

*From "Principles of Underwater Sound for Engineers,” by R. J. Urick.
Copyright (1967 McGraw-Hil11, Inc.). Used with permission of McGraw-Hill

Book Company.
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Due to increased biclogical, human, and natural activity, shallow-water
ambient noise is much more variable than deep water ambient noise but, in
general, the average shallow-water ambient noise is about 9 db higher than
deep-water ambient noise.

The directivity pattern of sea surface noise is not definitely known, but
it is generally assumed to be of the form cos™ & s where m=0,1,0r 2.
These angular dependences are plotted below:

It has been postulated that in the above cases a decrease in ambient
noise with depth is expected due primarily to attenuation. Accordingly, it
is expected that there would be a greater depth dependence for high frequency
than for Tow. Experiments generally confirm this.

Noise in the ocean is found to be nonisotropic with the Tow frequencies
coming predominantly from the horizontal and the high frequencies from the
surface as shown below.

.

8

—

g High frequency (~ 1 kHz)
@ ™

— S

.o

Sm Low frequency (~ 0.7 kHz)
o

W

This is in agreement with both the phenomenon of high frequency attenua-
tion and the dominance of the low frequency spectrum by distant shipping.
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